Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{1}\)
\(=\sqrt{n+1}-\sqrt{n}\)
Vậy đẳng thức đã được chứng minh .
Áp dụng :
\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+.....+\sqrt{100}-\sqrt{99}\)
\(=-1+\sqrt{100}\)
\(=-1+10=9\)
Bạn xem lời giải tại đây:
Câu hỏi của Lệ Nguyễn Thị Mỹ - Toán lớp 9 | Học trực tuyến
Xét VT = \(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\left(\sqrt{n+1}\right)}\)
\(=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{n+1-n}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\sqrt{n+1}+\sqrt{n}.\sqrt{n}.\sqrt{n+1}}\)
\(=\dfrac{1}{\sqrt{n}.\left(n+1\right)+n.\sqrt{n+1}}\) = VP
=> Đpcm
Lời giải:
Với 2 số $a,b$ dương, ta luôn có BĐT quen thuộc sau:
\(a^3+b^3\geq ab(a+b)\)
Cách chứng minh rất đơn giản, biến đổi tương đương ta có:
\(a^3+b^3-ab(a+b)\geq 0\)
\(\Leftrightarrow a^2(a-b)-b^2(a-b)\geq 0\Leftrightarrow (a-b)^2(a+b)\geq 0\) (luôn đúng với mọi $a,b>0$)
---------------------------------------
Áp dụng vào bài toán:
\((n+1)\sqrt{n+1}+n\sqrt{n}=(\sqrt{n})^3+(\sqrt{n+1})^3\geq \sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})\)
\(\Rightarrow \frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(\frac{1}{2\sqrt{2}+1}< 1-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......
\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cộng theo vế:
\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\)
Ta có đpcm.
Sửa đề:
\(\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\\ < =>\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=1\\ < =>n+1-n=1\\ < =>1=1\)(luôn luôn đúng)
=> đfcm
biến đổi vế phải ta có :
\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\left(đpcm\right)\)