K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

a,\(x^2+y^2=\left(x+y\right)^2-2xy\)

\(VP=\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2=VP\left(đpcm\right)\)

3 tháng 11 2019

\(\left(x^{n+3}-x^{n+1}.y^2\right):\left(x+y\right)\)

\(=\frac{x^{n+1}\left(x^2-y^2\right)}{x+y}\)

\(=\frac{x^{n+1}\left(x-y\right)\left(x+y\right)}{x+y}\)

\(=x^{n+1}\left(x-y\right)=x^{n+2}-x^{n+1}.y\)

Đpcm

31 tháng 8 2020

a) ( x - 1 )3 + 3x( x - 1 )2 + 3x2( x - 1 ) + x3

= [ ( x - 1 ) + x ) ]3 ( HĐT số 4 )

= [ x - 1 + x ]3

= [ 2x - 1 ]3 

=> đpcm

b) ( x2 - 2xy )3 + 3( x2 - 2xy )y2 + 3( x2 - 2xy )y4 + y6

= [ ( x2 - 2xy ) + y2 ]3 ( HĐT số 4 )

= [ x2 - 2xy + y2 ]3

= [ ( x - y )2 ]3

= ( x - y )6

=> đpcm

Bài 3:

Sửa đề: \(\left(3^{n+1}-2\cdot2^n\right)\left(3^{n+1}+2\cdot2^n\right)-3^{2n+2}+\left(8\cdot2^{n-2}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right)-3^{2n+2}+\left(2^{n+1}\right)^2\)

\(=\left(3^{n+1}\right)^2-\left(2^{n+1}\right)^2-3^{2n+2}+\left(2^{n+1}\right)^2\)

\(=3^{2n+2}-3^{2n+2}\)

=0

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)

\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)

\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=\left(x-y-z\right)^2=VT\)(đpcm)

b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)

\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)

\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=\left(x+y-z\right)^2=VT\)(đpcm)

c) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5=VP\)(đpcm)

14 tháng 8 2020

a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)

\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2-2zx-2yz+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

17 tháng 8 2016

\(1,x+y+z=0=>x=-\left(y+z\right)\)

\(=>x^2=\left(y+z\right)^2=y^2+2yz+z^2\)

\(=>x^2-y^2-z^2=2yz\)

\(=>\left(x^2-y^2-z^2\right)^2=\left(2yz\right)^2=4y^2z^2\)

\(=>x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4y^2z^2\)

\(=>x^4+y^4+z^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)

\(=>2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\left(đpcm\right)\)

\(2,A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2\right)^3-\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)

\(=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)

\(=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)

\(=2x^4+2x^2y^2+2y^4-3x^4-3y^4=-x^4+2x^2y^2-y^4\)

\(=-\left(x^4-2x^2y^2+z^4\right)=-\left[\left(x^2-y^2\right)^2\right]=-1\) (do x2-y2=1)

 

17 tháng 8 2016

\(3,\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)+15=\left(x^2-9\right)\left(x^2-1\right)+15\left(1\right)\)

Đặt \(x^2-5=t\),khi đó (1) trở thành :

\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(=\left(x^2-6\right)\left(x^2-4\right)=\left(x^2-6\right)\left(x-2\right)\left(x+2\right)\)

\(4,a,20^n-1=20^n-1^n=\left(20-1\right)\left(20^{n-1}+20^{n-1}+...+1^{n-1}\right)\)

chia hết cho (20-1)=19

=>20n-1 là hợp số vì có nhiều hơn 2 ước

b) đang kẹt,vấn đề nằm ở đề

8 tháng 9 2018

1, \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

Biến đổi VT :\(\left(xy+z\right)^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)\) = VP

Vậy \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)

2, \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)

Biến đổi VT: \(\left(x^2+y^2\right)^2-4x^2y^2\)

\(=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4-2x^2y^2+y^4\)

Biến đổi VP: \(\left(x+y\right)^2\left(x-y\right)^2\)

\(=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)

\(=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)\(=x^4-2x^2y^2+y^4\)

Ta có VT = VP

Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)

8 tháng 9 2018

1 ) \(VT=\left(xy+z\right)^2-x^2y^2\)

\(=x^2y^2+2xyz+z^2-x^2y^2\)

\(=2xyz+z^2\)

\(=z\left(2xy+z\right)=VP\left(đpcm\right)\)

2 ) \(VT=\left(x^2+y^2\right)^2-4x^2y^2\)

\(=x^4+2x^2y^2+y^4-4x^2y^2\)

\(=x^4+y^4-2x^2y^2\)

\(=\left(x^2-y^2\right)^2\)

\(=\left[\left(x-y\right)\left(x+y\right)\right]^2\)

\(=\left(x-y\right)^2\left(x+y\right)^2=VP\left(đpcm\right)\)

20 tháng 8 2018

\(a,x^4+2x^2+1=\left(x^2+1\right)^2\)

\(b,4x^2-12xy+9y^2=\left(2x-3y\right)^2\)

\(c,-x^2-2xy-y^2=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2\)

\(d,\left(x+y\right)^2-2\left(x+y\right)-1=\left(x+y\right)\left(x+y-2\right)-1\)

e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

g: \(=\left(x+2\right)^3\)

h: \(=\left(x+1\right)\left(x^2-x+1\right)+x\left(x+1\right)=\left(x^2+1\right)\left(x+1\right)\)

k: \(=x^3+y^3+3xy\left(x+y\right)-x^3-y^3\)

=3xy(x+y)