K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Đặt \((x+y)^2=a; (x-y)^2=b\)

\(\Rightarrow a+b=2(x^2+y^2)\)

Khi đó:

\((x+y)^6+(x-y)^6=a^3+b^3=(a+b)(a^2-ab+b^2)=2(x^2+y^2)(a^2-ab+b^2)\vdots x^2+y^2\)

Ta có đpcm.

Đặt \(m=3k+r\)với \(0\le r\le2\)        \(n=3t+s\)với \(0\le s\le2\)

\(\Rightarrow x^m+x^n+1=x^{3k+r}+x^{3t+s}+1=x^{3k}+x^r-x^r+x^{3t}x^s-x^s+x^r+x^s+1\)

\(=x^r\left(x^{3k}-1\right)+x^s\left(x^{3t}-1\right)+x^r+x^s+1\)

Ta thấy : \(\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)và \(\left(x^{3t}-1\right)⋮\left(x^2+x+1\right)\)

Vậy : \(\left(x^m+x^n+1\right)⋮\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x^r+x^s+1\right)⋮\left(x^2+x+1\right)\)với \(0\le r;s\le2\)

\(\Leftrightarrow\hept{\begin{cases}r=2\\r=1\end{cases}}\)\(\hept{\begin{cases}s=1\\s=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m=3k+2\\m=3k+1\end{cases}}\)\(\hept{\begin{cases}n=3t+1\\n=3t+2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}mn-2=\left(3k+2\right)\left(3t+1\right)-2=9kt+3k+6t=3\left(3kt+k+2t\right)\\mn-2=\left(3k+1\right)\left(3t+2\right)-2=9kt+6k+3t=3\left(3kt+2k+t\right)\end{cases}}\)

\(\Leftrightarrow\left(mn-2\right)⋮3\)Điều phải chứng minh 

Áp dụng : \(m=7;n=2\Rightarrow mn-2=12:3\)

\(\Rightarrow\left(x^7+x^2+1\right)⋮\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^7+x^2+1\right):\left(x^2+x+1\right)=x^5+x^4+x^2+x+1\)