K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

Ta có: \(2x^2+2x+1=0\)

\(\Rightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\) [ theo công thức (a+b)\(^2\)=a\(^2\)+2ab+b\(^2\)]

\(\Rightarrow\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)(vô lý)

\(\Rightarrow2x^2+2x+1\)vô nghiệm (đpcm).

16 tháng 4 2016

Giả sử f(x) tồn tại giá trị nghiệm n bất kì nào đó ( n\(\in\) R )

Khi đó  f(x) = x8+ x2 - x5 +1= 0 (1)

Xét các trường hợp của x5, ta có: 

TH1: x5 là số âm \(\Rightarrow\) x8+ x2 - x5 +1 = x8+ x2 - (- x5) +1 =  x8+ x+x5+ 1 luôn lớn hơn  0 ( trái với 1)

TH2 : x5 là số dương \(\Rightarrow\) x8+ x2 - x5 +1=x8+ x2 - x5 +1 mà x8+x2+1 luôn lớn hơn x5 nên x8+ x2 - x5 +1 luôn lớn hơn 0 ( trái với 1)

\(\Rightarrow\) không tồn tại giá trị n nào của x để x8+ x2 - x5 +1= 0 , như vậy điều giả sử là sai. Vậy đa thức

  x8+ x2 -x5 +1 vô nghiệm

16 tháng 4 2016

\(x^8-x^5+x^2+1=\left(x^4\right)^2-2.\frac{1}{2}.x^4.x+\left(\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1=\left(x^4-\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1>0\)

\(\Rightarrow\)vô nghiệm

25 tháng 4 2018

x2-2x+4

=x2-x-x+1+3

=x(x-1)-(x-1)+3

=(x-1)(x-1)+3

=(x-1)2+3>0

=> đa thức x2-2x+4 vô nghiệm

13 tháng 5 2016

ai tra loi ho minh voi khocroikhocroi

13 tháng 5 2016

x^4>hoặc=0

nên x^4+x>hoặc=0

=>x^4+x+11/2.x^2+6>hoặc=0

=>đa thức M(x) vô nghiệm

15 tháng 5 2017

Ta có: 

x2-10x+26 = (x2-10x+25)+1=(x-5)2+1\(\ge\)1 với mọi x

=> Đa thức x2-10x+26 vô nghiệm với mọi x

15 tháng 5 2017

Ta có: x2 -10x + 26 = x2 -5x -5x +25 +1 = x(x-5)-5(x-5) +1 = (x-5)2 +1

Mà \(\left(x-5\right)^2\ge0\)nên \(\left(x-5\right)^2+1\ge1\)

\(\Rightarrow\left(x-5\right)^2+1\ne0\)

Vậy đa thức trên không có nghiệm

22 tháng 4 2017

Với mọi x thuộc R có 2x^4 \(\ge\) 0 và 5x^2\(\ge\) 0

Suy ra 2x^4+5x^2+3\(\ge\) 3 > 0

Vậy đa thức trên vô nghiệm

22 tháng 4 2017

\(2x^4+5x^2+3\)

Dễ thấy \(2x^4\ge0\forall x\) ; \(5x^2\ge0\forall x\)

\(\Rightarrow2x^4+5x^2+3>0\forall x\)

Vậy đa thức trên vô nghiệm

30 tháng 4 2018

vì x^2.(2+9)+20>0 VỚI MỌI GT CỦA X => ĐT TRÊN VÔ NGHIỆM

30 tháng 4 2018

Ta có :\(2x^2+9x+20\)

Mà :\(2x^2>0\)

      \(9x>0\)

\(20>0\)

\(\Leftrightarrow\left(2x^2+9x+20\right)>0\)

=>Đa thức \(2x^2+9x+20\)vô nghiệm.

28 tháng 4 2016

x2+4x+4+1=(x+1)2+1

(x+1)+1 =0

(x+1)2=-1 ( vô lý)

==> da thuc k co nghiem

26 tháng 4 2017

Ta có: \(\left(y-3\right)^2\ge0\forall x\)

\(\left|2-y\right|\ge0\)

\(\Rightarrow\left(y-3\right)^2+\left|2-y\right|\ge0\)

Xét trường hợp (y-3)2+|2-y|=0 

\(\left(y-3\right)^2+\left|2-y\right|=0\Leftrightarrow\hept{\begin{cases}\left(y-3\right)^2=0\\2-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3\\y=2\end{cases}}\)(vô lý)

Vậy \(\Rightarrow\left(y-3\right)^2+\left|2-y\right|>0\forall x\)

hay \(M\left(x\right)>0\)

Vậy M(x) vô nghiệm

26 tháng 4 2017

Ta có : (y-3)2  là dương (số mũ chẵn)

         | 2-y|  cũng là dương vì là giá trị tuyệt đối

=> Với mọi y thì :  (y-3)2 + | 2-y| lớn hơn hoặc bằng 0

=> M(y)= (y-3)2 + | 2-y|  vô nghiệm