Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
\(x^2+2006+x\)
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{2}+\frac{4011}{2}\)
\(=x.\left(x+\frac{1}{2}\right)+\frac{1}{2}.\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)
\(=\left(x+\frac{1}{2}\right).\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}\)
\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ nên }\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}>0\)
\(\text{Hay }x^2+2006+x>0\)
\(\text{Vậy đa thức }x^2+2006+x\text{ vô nghiêm}\)
trời ơi ! cái này thì tui biết thừa ! chỉ cần coppy về rùi bấm vào văn bản máy fx rồi tự làm trên máy cũng được !
G (x) = x2 + 2x + 3
= x2 + x + x + 1 + 2
= x.(x + 1) + (x + 1) + 2
= (x + 1).(x + 1) + 2
= (x + 1)2 + 2 \(\ge\)2
Vậy G(x) vô nghiệm.
A (x) = x2 - x + 1
= x2 - 1/2x - 1/2x + 1/4 + 3/4
= x.(x - 1/2) - 1/2.(x - 1/2) + 3/4
= (x - 1/2).(x - 1/2) + 3/4
= (x - 1/2)2 + 3/4 \(\ge\)3/4
Vậy A(x) vô nghiệm.
\(G\left(x\right)=x^2+2x+3\)
\(=x^2+x+x+1+2\)
\(=x.\left(x+1\right)+\left(x+1\right)+2\)
\(=\left(x+1\right).\left(x+1\right)+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy \(G\left(x\right)\) vô nghiệm .
\(A\left(x\right)=x^2-x+1\)
\(=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x.\left(x-\frac{1}{2}\right)-\frac{1}{2}.\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right).\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(A\left(x\right)\) vô nghiệm
x8-x7+x4-x+1
=( x8-x7) -(x-1)+x4
=x(x-1)-(x-1)+x4
=(x-1)(x-1)+x4
=(x-1)2+x4
mà (x-1)2\(\ge\)0
x4 \(\ge\)0
=> (x-1)2+x4 \(\ge\) 0
Vậy x8-x7+x4-x+1 \(\ge\) 0
=> đa thức trên vô nghiệm
D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0
vậy D(x) vô nghiệm
Dùng hằng thức (a-b)2=a2-2ab+b2 ta có
D(x)= X2-4x+5=x2-2x2+22+1
=(x-2)2+1
Vì (x-2)2>-1 suy ra (x-2)2+1>0
Vậy đa thức D(x)=x2-4x+5 không có nghiệm
\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
= \(\left(x^2+2\right)\left(x^2+x+1\right)\)
Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)
Suy ra , đa thức trên vô nghiệm
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm
Ta có
x^2 luôn >= 0 với mọi x
x>=0 với mọi x
1>0
Nên đa thức P(x) vô nghiệm
1-4*1*1=-3 < 0
=> vô ...........