K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C\left(x\right)=2x^2+4x+7=2x^2+4x+2+5\)

\(C\left(x\right)=2\left(x^2+2x+1\right)+5=2\left(x^2+x+x+1\right)+5\)

\(C\left(x\right)=2\left[x\left(x+1\right)+\left(x+1\right)\right]+5\)

\(C\left(x\right)=2\left(x+1\right)^2+5\). Vì \(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+5\ge5>0\forall x\)

=> Đa thức không có nghiệm

( Nếu là lớp 8 thì dùng hằng đẳng thức ra ngay nhưng mà bạn lớp 7 thì mình phân tích ra nhé )

11 tháng 5 2020

x2 + 4x + 10 

Ta có : \(x^2\ge0\forall x\)

4x \(\ne\) 0 với x âm ; 4x \(\ne\) 0 với x dương

\(10\ne0\)

=> \(x^2+4x+10\ne0\)

=> Vô nghiệm ( đpcm ) 

12 tháng 5 2020

@Trần Nhật Quỳnh@ phân tích này mới đúng

\(x^2+4x+10=x^2+4x+2+8=\left(x^2+4x+2\right)+8=\left(x+2\right)^2+8\)

Ta thấy \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+8>0\forall x\)hay \(x^2+4x+10>0\forall x\)

=> Đa thức \(x^2+4x+10\)không có nghiệm

9 tháng 3 2018

a/ \(-x^2-4x-8=0\)

\(\Leftrightarrow-x^2-2x-2x-8=0\)

\(\Leftrightarrow-\left[x^2+2x+2x+8\right]=0\)

\(\Leftrightarrow-\left[x\left(x+2\right)+2\left(x+2\right)+4\right]=0\)

\(\Leftrightarrow-\left[\left(x+2\right)\left(x+2\right)+4\right]=0\)

\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]=0\)

Với mọi x ta có :

\(+,\left(x+2\right)^2\ge0\)

\(+,4>0\)

\(\Leftrightarrow\left(x+2\right)^2+4>0\)

\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]< 0\)

\(\Leftrightarrow-x^2-4x-8\) vô nghiệm

b/ \(2x^2+4x+7=0\)

\(\Leftrightarrow2x^2+2x+2x+7=0\)

\(\Leftrightarrow2\left(x^2+x+x+\dfrac{7}{2}\right)=0\)

\(\Leftrightarrow2\left[x\left(x+1\right)+\left(x+1\right)+\dfrac{5}{2}\right]=0\)

\(\Leftrightarrow2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]=0\)

\(\Leftrightarrow2\left(x+1\right)^2+5=0\)

Với mọi x ta có :

\(2\left(x+1\right)^2\ge0\)

\(5>0\)

\(\Leftrightarrow2\left(x+1\right)^2+5>0\)

\(\Leftrightarrow2x^2+4x+7\) vô nghiệm

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)

24 tháng 4 2019

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow2.\left(x-3\right)^2+5\ge5\forall x\)

Vậy đa  thức trên ko có nghiệm

24 tháng 4 2019

a ngược là gì vậy

23 tháng 7 2021

Ta có: x2 - x + 1 = x2 - 1/2.x - 1/2.x + 1/4 + 3/4 = x(x - 1/2) - 1/2(x - 1/2) + 3/4 = (x - 1/2)2 + 3/4 

Do (x  - 1/2)2 \(\ge\)với mọi x ; 3/4 > 0

=> (x - 1/2)2 + 3/4 > 0 với mọi x=> x2 - x + 1 > 0 với mọi x

=> đa thức x2 - x + 1 không có nghiệm

21 tháng 4 2020

Ta có: P(x) = 2 . ( x2 + 4x ) + 17 

                   = 2 . ( x2 + 2 . x . 2 + 22 - 22 ) + 17 

                   = 2 . [ ( x2 + 2 . x . 2 + 22 ) - 22 ] + 17 

                   = 2 . [ ( x + 2 )2 - 4 ] + 17 

                   = 2 . ( x + 2 )2 - 8 + 17 

                   = 2 . ( x + 2 )2 + 9

Vì ( x + 2 )2 \(\ge\) 0 với mọi x 

\(\Rightarrow\) 2 . ( x + 2 )2 \(\ge\) 0 với mọi x 

\(\Rightarrow\) 2 . ( x + 2 )2 + 9 \(\ge\) 9 \(>\) 0  với mọi x  

\(\Rightarrow\) P(x) \(\ge\) 0  với mọi x  

\(\Rightarrow\)Đa thức P(x) không có nghiệm   

                         

26 tháng 7 2019

\(M\left(x\right)=5x^3+2x^4-x^3+3x^2-x^3-x^4+1-4x^3\)

\(M\left(x\right)=x^4+2x^2+1\)

Dễ thấy: \(\hept{\begin{cases}x^4\ge0\\2x^2\ge0\end{cases}}\Rightarrow x^4+2x^2\ge0\)

\(M\left(x\right)=x^4+2x^2+1\ge1\)

=> đa thức M(x) vô nghiệm

26 tháng 7 2019

Lê Trung HiếuKo bt rút gọn à

\(M\left(x\right)=x^4-x^3+3x^2+1\)

7 tháng 4 2016

Do nó là các đa thức bậc 2 được đưa về với dạng ax^2+bx+c và ax^2-bx+c

nên chúng vô nghiệm

7 tháng 4 2016

a) Vì x2 > hoặc = 0 

=)) 4x> hoặc = 4

=))  4x- 4x > hoặc = 0 

=))   4x- 4x + 2 > hoặc = 2 

=))  đa thức 4x- 4x + 2 không có nghiệm 

b) 

CMTT ta có : 

9x+ 6x + 3 > 0 

=)) đa thức 9x+ 6x + 3 không có nghiệm