K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2022

\(=\dfrac{\left(x+y\right)^2}{x}.\dfrac{x}{\left(x+y\right)^2}-\dfrac{\left(x+y\right)^2}{x}.\dfrac{x}{\left(x+y\right)\left(x-y\right)}-\dfrac{5x-3y}{y-x}\)

\(=1-\dfrac{x+y}{x-y}+\dfrac{5x-3y}{x-y}\)

\(=\dfrac{x-y-x-y+5x-3y}{x-y}=\dfrac{5x-5y}{x-y}=5\)

7 tháng 1 2022

\(\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right)-\frac{5x-3y}{y-x}\left(đk:x\text{≠}0-y;y\right).\)

\(=\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{\left(x-y\right)\left(x+y\right)}\right)-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\frac{x\left(x-y\right)-x\left(x+y\right)}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)

\(=\frac{1}{x}.\frac{x^2-xy-x^2-xy}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)

\(=\frac{1}{x}.\frac{-2xy}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2y}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2xy+5x-3y}{x-y}\)

\(=\frac{5\left(x-y\right)}{x-y}\)

\(=5\)

Ta có đpcm

a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)

\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)

\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)

\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)

\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)

\(=x^2y^2+1+x^2-x^2y-y+y^2\)

\(=x^2y^2-y+x^2+y^2-x^2y+1\)

\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)

\(=\left(x^2+1\right)\left(y^2-y+1\right)\)

=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)

b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)

Dấu = xảy ra khi y=3/8

 

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

9 tháng 1 2022

\(\frac{\left(x+y\right)^2}{x}.\left[\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right]-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\left[\frac{x}{\left(x+y\right)^2}-\frac{x}{\left(x-y\right)\left(x+y\right)}\right]-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\left[\frac{x\left(x-y\right)}{\left(x+y\right)^2\left(x-y\right)}-\frac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)^2}\right]-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\left[\frac{x^2-xy-x^2-xy}{\left(x+y\right)^2\left(x-y\right)}\right]-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\frac{-2xy}{\left(x+y\right)^2\left(x-y\right)}-\frac{5x-3y}{y-x}\)

\(=\frac{-2y}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2y+5x-3y}{x-y}\)

\(=\frac{5x-5y}{x-y}\)

\(=\frac{5\left(x-y\right)}{x-y}\)

\(=5\)

Vậy: ...

`@ x+y+z=1`.

`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)

`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.

`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`

`=1.`

Vậy `P` không phụ thuộc vào giá trị của biến.

6 tháng 2 2021

Tham khảo:

Chứng minh \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)} \dfrac{z-x}{\left(y-z\right)\left(y-x\right)} \dfrac{... - Hoc24

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

\(\begin{array}{l}a) A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\\ = \left( {\frac{{x + 1 + x - 1}}{{{x^2} - 1}}} \right).\left( {\frac{{{x^2} - 1}}{x}} \right)\\ = \frac{{2x}}{{{x^2} - 1}}.\frac{{{x^2} - 1}}{x} = \frac{{2x.\left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = 2\end{array}\)

Vậy A = 2 không phụ thuộc vào giá trị của các biến

\(\begin{array}{l}b) B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{x\left( {y - x} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{ - x\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} - \dfrac{{\left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2} - \left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} = 1\end{array}\)

Vậy B = 1 không phụ thuộc vào giá trị của biến x

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

\(A=\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\left(x-\dfrac{1}{x}\right)\)

\(=\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2-1}{x}\)

\(=\dfrac{2x}{x^2-1}\cdot\dfrac{x^2-1}{x}=\dfrac{2x}{x}=2\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne y\\x\ne0\\y\ne0\end{matrix}\right.\)

\(B=\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right)\cdot\dfrac{x^2y-xy^2}{\left(x-y\right)^2}\)

\(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right)\cdot\dfrac{xy\left(x-y\right)}{\left(x-y\right)^2}\)

\(=\left(\dfrac{x^2-y\left(2x-y\right)}{xy\left(x-y\right)}\right)\cdot\dfrac{xy}{x-y}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)^2}\cdot xy=\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}=1\)