Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).
Tổng hai số còn lại là \(36\).
Gọi hai số đó là \(a,b\).
Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)
Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min.
Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.
Không mất tính tổng quát, giả sử \(a>b>0\)
Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ.
Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì:
\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\).
Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất.
Với \(b=3\Rightarrow a=33\)loại.
Với \(b=5\Rightarrow a=31\)(thỏa mãn)
Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).
Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).
Câu 1: Cho x2−6x+1=0x2−6x+1=0.Tính giá trị biểu thức B=x4+8x2+1
/x^2
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Chúc bạn học tốt.