Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn ko biết thì bn đừng nói, nói thế thừa lắm, ko ai hỏi bn đâu mà bn phải nói
a. TXĐ: \(D=R\)
Với mọi \(x\in D\Rightarrow x\pm2\pi\in D\)
Đồng thời:
\(y\left(x+2\pi\right)=sin\left(x+2\pi\right)+cos\left(2x+4\pi\right)=sinx+cos2x=y\left(x\right)\)
\(\Rightarrow\) Hàm là hàm tuần hoàn với chu kì \(T=2\pi\)
b. TXĐ: \(D=R\)
Với mọi \(x\in D\Rightarrow x\pm\dfrac{2\pi}{3}\in D\)
\(y\left(x+\dfrac{2\pi}{3}\right)=sin\left(3x+2\pi\right)=sin3x=y\left(x\right)\)
\(\Rightarrow\) Hàm là hàm tuần hoàn với chu kì \(T=\dfrac{2\pi}{3}\)
Hàm số y=3*sin2x tuần hoàn theo chu kì là:
\(T=\dfrac{2\Omega}{2}=\Omega\)
=>Chọn C
1. T= \(\frac{\pi}{\left|a\right|}=\frac{\pi}{3}\)
2. \(T_1=\frac{2\pi}{2}=\pi\) ; \(T_2=\frac{2\pi}{\frac{1}{2}}=4\pi\)
=> \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
3. \(\left[{}\begin{matrix}5x-45^o=30^o+k360^o\\5x-45^o=-30^o+k360^o\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=75^o+k360^o\\5x=15^o+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15^o+k72^o\\x=3^0+k72^o\end{matrix}\right.\) \(\left(k\in Z\right)\)
Cho k=-1 thì x= -57 độ or x= -69 độ nên lấy x= -57 độ là no âm lớn nhất => Chọn C
4. Có pt hoành độ giao điểm của 2 đths : sinx = sin3x
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)
trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\) với \(x=k\pi\Rightarrow k\in\left\{0;1\right\}\)
với \(x=\frac{\pi}{4}+\frac{k\pi}{4}\Rightarrow k\in\left\{-1;0;1;2\right\}\)
Vậy 2 đths cắt nhau tại 6 điểm trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\)
5. cot = \(\sqrt{3}\) \(\Leftrightarrow tanx=\frac{1}{\sqrt{3}}\Leftrightarrow x=\frac{\pi}{6}+k\pi\left(k\in Z\right)\)
x \(\in\left[0;2017\pi\right]\Rightarrow k\in\left\{0;1;2;....;2015;2016\right\}\)
Vậy ptrinh có 2017 nghiệm.
CHÚC BẠN HỌC TỐT..!!
TXĐ: \(D=R\backslash\left\{\dfrac{\pi}{2}+k\pi\right\}\)
\(\forall x\in D\Rightarrow x+\pi\in D\) và \(x-\pi\in D\)
\(f\left(x+\pi\right)=tan\left(x+\pi\right)=tanx=f\left(x\right)\)
\(\Rightarrow\) Hàm y=tanx tuần hoàn với chu kì \(\pi\)