K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

gọi d là ucln cua 3n+1 va 4n+1

3n+1 \(⋮\)\(\Rightarrow\)4(3n+1) =12n+4 \(⋮\)d ;4n+1 \(⋮\)\(\Rightarrow\)3(4n+1)=12n+3 \(⋮\)d

12n+4-(12n+3) =1\(⋮\)\(\Rightarrow\)d=1 Vậy ....

14 tháng 11 2017

Giải 
Gọi ƯCLN(3n+1;4n+1) là d 
=>\(\hept{\begin{cases}3n+1:d\\4n+1:d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n+1\right):d\\3\left(4n+1\right):d\end{cases}}\)=>\(\hept{\begin{cases}12n+4:d\\12n+3:d\end{cases}}\)=>(12n+4)-(12n+3)=1:d=>d thuộc Ư(1)={1}
=> ƯCLN(3n+1;4n+1)=1 => 2 số 3n+1;4n+1 nguyên tố cùng nhau (đpcm)

12 tháng 11 2017

a) Gọi 2 số lẻ liên tiếp là 2n+ 1; 2n+ 3.

Gọi( 2n+ 1; 2n+ 3)= d.

=> 2n+ 1\(⋮\) d; 2n+ 3\(⋮\) d.

=>( 2n+ 3)-( 2n+ 1)\(⋮\) d.

=> 2n+ 3- 2n- 1\(⋮\) d.

=> 2\(⋮\) d.

=> d\(\in\){ 1; 2}.

Mà 2n+ 1 không\(⋮\) 2.

=> d= 1.

=>( 2n+ 1; 2n+ 3)= 1.

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.

b) Gọi( 2n+ 5; 3n+ 7)= d.

=> 2n+ 5\(⋮\) d; 3n+ 7\(⋮\) d.

Ta có: 2n+ 5\(⋮\) d.

=> 3( 2n+ 5)\(⋮\) d.

=> 6n+ 15\(⋮\) d( 1).

3n+ 7\(⋮\) d.

=> 2( 3n+ 7)\(⋮\) d.

6n+ 14\(⋮\) d( 2).

Từ( 1) và( 2), ta có:

( 6n+ 15)-( 6n+ 14)\(⋮\) d.

=> 6n+ 15- 6n- 14\(⋮\) d.

=> 1\(⋮\) d.

=> d= 1.

=>( 2n+ 5; 3n+ 7)= 1.

Vậy 2n+ 5 và 3n+ 7 nguyên tố cùng nhau.

9 tháng 11 2015

Gọi d là BC(3n+1; 4n+1) (d thuộc n)

=>3n+1 chia hết cho d =>12n+4 chia hết cho d (nhân 3n+1 với 4)

=>4n+1 chia hết cho d =>12n+3 chia hết cho d (Nhân 4n+1 với 3)

=>12n+4 -12n-3 chia hết cho d

=>1 chia hết cho d 

=>d=1=>(3n+1;4n+1)+1

=>3n+1 và 4n+1 là 2 số nguyên tố cùng nhau

25 tháng 1 2015

1.a) goi d la uoc chung cua 2n+1 va 2n+3

Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d 

 Suy ra (2n+3)-(2n+1) chia het cho d 

             Suy ra 2 chia het cho d

             MA d la uoc cua mot so le  nen d=1

VAy 2n+1 va 2n+3 la so nguyen to cung nhau.

b) Goi d la uoc chung cua 2n+5 va 3n+7

Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d

Suy ra 3(2n+5)-2(3n+7) chia het cho d

Suy ra 6n+15-6n-14 chia het cho d

Suy ra 1 chia het cho d

Suy ra d=1

Vay 2n+5 va 3n+7 la so nguyen to cung nhau.

Cau 2)

Vi 2n+1 luon luon chia het cho 2n+1

Suy ra 2(2n+1) chia het cho 2n+1

Suy ra 4n+2 chia het cho 2n+1(1)

Gia su 4n+3 chia het cho 2n+1 (2)

Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1

suy ra 1 chia het cho 2n+1

suy ra 2n+1 =1

           2n=0

                n=0

Vay n=0 thi 4n+3 chia het cho 2n+1.

 

22 tháng 11 2017

Gọi ƯClN (3n+1,4n+1)= d\(\Rightarrow\left(3n+1\right)⋮d\)\(\left(4n+1\right)⋮d\)

\(\Rightarrow4.\left(3n+1\right)⋮d\)\(3.\left(4n+1\right)⋮d\Rightarrow4.\left(3n+1\right)-3.\left(4n+1\right)⋮d\)

\(\Rightarrow12n+4-\left(12n+3\right)⋮d\Rightarrow12n+4-12n-3\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\)3n+1 và 4n+1 là hai nguyên tố cùng nhau

câu còn ại tương tự

3 tháng 12 2016

Giải:

Đặt \(d=UCLN\left(3n+1;2n+1\right)\)

Ta có:

\(3n+1⋮d\)

\(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)

\(3\left(2n+1\right)⋮d\)

\(\Rightarrow6n+2⋮d\)

\(6n+3⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=UCLN\left(3n+1;2n+1\right)=1\)

\(\Rightarrow3n+1\) và 2n + 1 là 2 số nguyên tố cùng nhau

Vậy...

 

 

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

25 tháng 10 2017

a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)

Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow\)d bằng 1 hoặc d bằng 2

Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.

24 tháng 1 2018
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ n + 1 ⋮ d 2 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 2 n + 2 ⋮ d 2 n + 3 ⋮ d {n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d ⇒ 2 n + 3 − ( 2 n + 2 ) ⋮ d ⇒2n+3−(2n+2)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*) ta có: ⎧ ⎨ ⎩ 2 n + 3 ⋮ d 4 n + 8 ⋮ d ⇒ ⎧ ⎨ ⎩ 4 n + 6 ⋮ d 4 n + 8 ⋮ d {2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d ⇒ 4 n + 8 − ( 4 n + 6 ) ⋮ d ⇒4n+8−(4n+6)⋮d ⇒ 2 ⋮ d ⇒2⋮d ⇒ d ∈ { 1 ; 2 } ⇒d∈{1;2} Mà 2n + 3 là số lẻ => d = 1 => đpcm c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ 3 n + 2 ⋮ d 5 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 15 n + 10 ⋮ d 15 n + 9 ⋮ d {3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d ⇒ 15 n + 10 − ( 15 n + 9 ) ⋮ d ⇒15n+10−(15n+9)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm Đúng Bình luận Báo cáo sai phạm Thu gọn
23 tháng 11 2016

Gọi ƯCLN(3n+1 ; 4n +1 ) là d

\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)

=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d

=> 1 ⋮ d

=> d = 1

Vậy .......

23 tháng 11 2016

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:

1) 3n + 1 và 4n + 1 với n ∈ N

Gọi d là (3n + 1, 4n+1)

=) 3n+1 chia hết cho d

=) 4n+1 chia hết cho d

Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ

Ta có: 4(3n+1) - 3(4n+1)

= 12n + 4 - 12n+3

= 1

hay d chia hết cho 1 =) d =1 (đpcm)

do đó : (3n + 1, 4n+1) = 1

12 tháng 2 2016

Gọi ƯCNL(3n+1 ; 4n+1) = d

Ta có : 3n + 1 chia hết cho d  =>  4(3n + 1) chia hết cho d

            4n + 1 chia hết cho d  =>  3(4n + 1) chia hết cho d

=> 4(3n + 1) - 3(4n + 1) chia hết cho d

=> (12n + 4) - (12n + 3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)

12 tháng 2 2016

Gọi d là ƯCLN(3n+1;4n+1)

       3n+1 chia hết cho d             4(3n+1) chia hết cho d       12n+4 chia hết cho d(1)

=>{                                    =>{                                     =>

       4n+1 chia hết cho d            3(4n+1) chia hết cho d         12n+3 chia hết cho d(2)

Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d

=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau