K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

a) Gọi \(d=ƯCLN\left(2n+1;4n+5\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\4n+5⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4n+2⋮d\\4n+5⋮d\end{cases}}\)

\(\Leftrightarrow3⋮d\)

Vì \(d\in N;3⋮d\Leftrightarrow d=1;3\)

Ok đề sai!

28 tháng 7 2017

dfakdfgaewtrywiesfgggggggggggggggguououououououououououououoatuaewbgggggggggggggggggaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhhhhaooooooooooooooooooofhhhhhhhhhhhhhhhhhhoaaaaaaaaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhaoooooooooooooooohffffffoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

  1. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
13 tháng 4 2015

a) Gọi d là ƯCLN của n+1 và 2n+3, ta có:

(2n+3)-(n+1) chia hết cho d

=> (2n+3)-2(n+1) chia hết cho d

=> 2n+3-2n-2 chia hết cho d

=> 2n-2n+3-2 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy n+1/2n+3 là 2 phân số tối giản 

b) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:

(4n+8)-(2n+3) chia hết cho d

4n+8-2(2n+3) chia hết cho d

4n+8-4n-6 chia hết cho d

4n-4n+8-6 chia hết cho d

2 chia hết cho d => d=2

nhưng vì 2n+3 lẻ nên d là số lẻ => d=1

vậy 2n+3/4n+8 là 2 phân số tối giản

c) gọi d là ưcln của 3n+2 và 5n+3, ta có

(3n+2)-(5n+3) chia hết cho d

5(3n+2)-3(5n+3) chia hết cho d

15n+10-15n-9 chia hết cho d

15n-15n+10-9 chia hết cho d

1 chia hết cho d => d=1

vậy 3n+2/5n+3 là 2 phân số tối giản 

13 tháng 4 2015

a)Gọi ƯCLN(n+1;2n+3)=d

=> n+1 chia hết cho d; 2n+3 chia hết cho d

=> 2(n+1)chia hết cho d; 2n+3 chia hết cho d

=>[2n+3-(2n+1)]chia hết cho d

=>2n+3-2n-2 chia hết cho d

(2n-2n)+(3-2)chia hết cho d

1 chia hết cho d => d=1; ƯCLN(n+1;2n+3)=1

Vậy n+1/2n+3 là phân số tối giản với mọi số tự nhiên n

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

31 tháng 3 2020

Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1

Bài giải

a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))

Gọi ƯCLN (n + 1; 3n + 4) là d    (d \(\inℕ^∗\))

=> n + 1 \(⋮\)d;   3n + 4 \(⋮\)d

=> 3n + 4 - 3(n + 1) \(⋮\)d

=> 1 \(⋮\)d

=> ƯCLN (n + 1; 3n + 4) = 1

=> \(\frac{n+1}{3n+4}\)là phân số tối giản

=> ĐPCM

b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))

Gọi ƯCLN (2n + 3; 3n + 5) là d  (d \(\inℕ^∗\))

=> 2n + 3 \(⋮\)d;      3n + 5 \(⋮\)d

=> 2(3n + 5) - 3(2n + 3) \(⋮\)d

=> 1 \(⋮\)d

=> ƯCLN (2n + 3; 3n + 5) = 1

=> \(\frac{2n+3}{3n+5}\)là phân số tối giản

=> ĐPCM

31 tháng 3 2020

a) Gọi (n+1,3n+4) là d ( d thuộc N* )

=> n+1 và 3n+4 đều chia hết cho d

=> (3n+4)-3(n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau

=> P/s n+1/3n+4 tối giản với mọi n thuộc N  (đpcm)

b) Gọi (2n+3,3n+5) là d  (d thuộc N*)

=> 2n+3 chia hết cho d và 3n+5 chia hết cho d

=> (3n+5)-(2n+3) chia hết cho d

=> 2(3n+5)-3(2n+3) chia hết cho d

=> 6n+10-6n+9 chia hết cho d

=> d=1

=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau

=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N  (đpcm)

4 tháng 3 2022

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

9 tháng 2 2020

Nhớ trả lời nhanh nha

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm