Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử các biểu thức đều xác định
a/
\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)
b/
\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)
c/
\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)
d/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)
\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)
Lời giải:
a)
\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)
b)
\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)
\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)
c)
\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)
\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)
d)
\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)
\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)
e)
\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)
\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)
Ta có ddpcm.
\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)
\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)
\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)
\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)
\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)
a)
\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)
b)
\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)
\(=1-2\sin ^2x\cos ^2x\)
c)
\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)
\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)
\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)
d)
\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)
\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)
\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)
e)
\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)
\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)
\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)
\(=1+2\sin x\cos x\)
-------------
P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)
Sửa đề: \(2\cdot sin\left(180-a\right)\cdot cota-cos\left(180-a\right)\cdot tana+cot\left(180-a\right)\)
\(=2\cdot sina\cdot cota+cosa\cdot tana+\dfrac{cos\left(180-a\right)}{sin\left(180-a\right)}\)
\(=2\cdot sina\cdot\dfrac{cosa}{sina}+cosa\cdot\dfrac{sina}{cosa}+\dfrac{-cosa}{sina}\)
\(=2cosa+sina-tana\)
B=1-sin2a+cos2a
\(=\sin^2a+\cos^2a-\sin^2a+\cos^2a=2\cos^2a\)
C= 1-sina.cosa.tana
\(=1-\sin a.\cos a.\frac{\sin a}{\cos a}=1-\sin^2a=\cos^2a\)
biết có vậy thôi à