Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.VP\)
\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)
\(=a^2+b^2=VT\left(DPCM\right)\)
1/ (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2
2/ (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
Bài 4: Chứng minh các hằng đẳng thức sau
a. x2+y2=(x+ y)2- 2xy
biến đổi vế phải ta được:
(x+ y)2- 2xy
=x2+2xy+y2-2xy
=x2+y2 bằng vế phải
=> biểu thức đã được chứng minh
b. (a+b)2-(a-b)(a+b)= 2b(a+b)
biến đổi vế trái ta được:
(a+b)2-(a-b)(a+b)
=a2+2ab+b2-(a2-b2)
=a2+2ab+b2-a2+b2
=2ab+2b2
=2b(a+b)
a) (a-b)^3=-(b-a)^3
\(Taco:-\left(b-a\right)^3\)
=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)
\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)
\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)
\(=-\left(a+b\right)\left(-a-b\right)\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\)