K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

x4 + y4 + (x + y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 + 4xy3 + y4

= 2x4 + 2y4 + 4x2y2 + 4x3y + 4xy3 + 2x2y2

= 2(x4 + y4 + 2x2y2) + 4xy(x2 + y2) + 2x2y2

= 2(x2 + y2)2 + 4xy(x2 + y2) + 2x2y2

= \(2\left [ (x^{2} + y^{2}) + 2xy(x^{2} + y^{2}) + x^{2}y^{2} \right ]\)

= 2(x2 + xy + y2)2 (đpcm)

30 tháng 8 2019

\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)

\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)

1 tháng 10 2019

\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)

\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)

=> dpcm

2 tháng 10 2019

Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)

\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)

\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)

Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)

\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)

\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Áp dụng BĐT Cauchy cho 3 số:

\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)

\(\Rightarrow9+x^2+y^2+z^2\ge12\)

hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)

22 tháng 5 2019

Áp dụng BĐT Cô-si,ta có :

x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\)\(y^4+xz\ge2y^2\sqrt{xz}\)\(z^4+xy\ge2z^2\sqrt{xy}\)

\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

31 tháng 5 2020

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)

\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

11 tháng 5 2017

1.TA CO A^2 + B^2/4 >=AB ... 4- (A^2+1/A^2)>=AB . VOI A^2>=0 TACO A^2 +1/A^2 >=2 ... - (A^2+1/A^2)<=-2                                     SUYRA  AB<= - (A^2+1/A^2)+4 <=-2+4 HAY AB<=2 . MAX AB=2 KHI A=1 , B=2A=2                                                                            2.XY-X-Y=0...XY-X-Y+1=1...X(Y-1)-(Y-1)=1...(X-1)(Y-1)=1. Vi X,Y NGUYEN NEN X-1 , Y-1 NGUYEN                                                      ...(X-1)(Y-1)=1.1= -1 .-1. VS X-1=1,Y-1=1 SUYRA X=Y=2...VS X-1=-1,Y-1=-1 SUYRA X=Y=0                                                              

11 tháng 5 2017

1) \(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2\ge0\)

hay \(ab\le2\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\a=\frac{b}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

2)

\(PT\Leftrightarrow\left(1-x\right)\left(y-1\right)=-1=1.\left(-1\right)=\left(-1\right).1\)

Xét các Th

3) bunyakovsky

1 tháng 9 2017

\(\hept{\begin{cases}x^2+y^2=4-xy\\\left(x^2+y^2\right)^2-x^2y^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}...\\\left(4-xy\right)^2-x^2y^2=8\Leftrightarrow xy=1.\end{cases}.}}\)

\(\hept{\begin{cases}x^2+y^2=3\\x^4+y^4=7\end{cases}}\left(xy=1\right)\Leftrightarrow7.3=\left(x^4+y^4\right)\left(x^2+y^2\right)=x^6+y^6+x^2y^2\left(x^2+y^2\right)=x^6+y^6+3.1\\ \Rightarrow x^6+y^6=7.3-3=18.\)
=> \(\Rightarrow x^6+y^6+x^2y^2=18+1=19..\)


p/s: Sai sót gì thông cảm :3

1 tháng 9 2017

À mình nhầm :v \(x^4+y^4=8+x^2y^2=9.\) Nhé :v sửa lại 9 là ok  :3