Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)
B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)
\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)
a) \(\left(x+a\right).\left(x+b\right)=x.x+x.b+a.x+a.b=x^2+bx+ax+ab=x^2+\left(a+b\right)x+ab\)
Vậy (x + a) . (x + b) = x2 + (a + b) . x + ab.
b)\(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)(Vế đầu mình áp dụng luôn ở câu a)
\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)
\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)
\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)
Vậy (x + a) . (x + b) . (x + c) = x3 + (a + b + c) . x2 + (ab + bc + ca) . x + abc.
TC:a+b+cd=2p=>b+c=2p-a
=>(b+c)2=(2p-a)2
=>b2+2bc+c2=4p2-4pa+a2
=>b2+2bc+c2-a2=4p2-4pa
=>2bc+b2+c2-a2=4p(p-a) ĐPCM
Ta có : \(a+b+cd=2p\Rightarrow b+c=2p-a\)
\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)
\(\Rightarrow b^2+2bc+c^2-a^2=4p^2-4pa\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(\RightarrowĐPCM\)
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)
\(=x^3+bx^2+ax^2+abx+cx^2+bcx+acx+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+cax\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)
\(\Rightarrowđpcm\)
Ta có: (x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc
VT = (x2+ax+bx+ab)(x+c)
= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (1)
VP = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc
= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (2)
Từ (1) và (2), suy ra:
(x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc
bài 1 tính giá trị của đa thức
a) Q=x3-30x2-31x+1 tại x= 31
Thay x=31 và đa thức Q, ta đc:
Q = 31.312-30.312-31.31+1
=( 31-30-1)31+1
=0.31+1
=1
b) P=x6-50x5+50x4-50x3+50x2-50x+50 tại x=49
( mình chưa nghĩ ra)
bài2 chứng minh đẳng thức sau
a)(x+a)(x+b)(x+c)=x3+(a+b+c)x2+(ab+bc+ca)x+abc
(x2+bx+ax+ab)(x+c)=x3+ax2+bx2+cx2+abx+bcx+acx+abc
x3+cx2+bx2+bcx+ax2+acx+abx+abc=x3+ax2+bx2+cx2+abx+bcx+acx+abc
Vậy 2 đẳng thức trên bằng nhau.
b)a2(b-c)+b2(c-a)+c2(a-b)= (a-b)(b-c)(a-c)
= a2b-a2c+b2c-ab2+ac2-bc2=(ab-ac-b2+bc)(a-c)
=a2b-a2c+b2c-ab2+ac2-bc2=a2b-abc-a2c+ac2-ab2+b2c+abc-bc2
Vậy 2 đẳng thức trên bằng nhau.
a) \(\left(x-y\right)\left(x+y\right)\)
\(=x^2+xy-xy-y^2\)
\(=x^2-y^2\)
b) \(\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)
\(=x^4+x^2y^2+x^3y+xy^3-x^3y-xy^3-x^2y^2-y^4\)
\(=x^4-y^4\)
c)\(\left(a+b+c\right)\left(ab+bc+ac\right)-abc\)
\(=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+bc^2+ac^2-abc\)
\(=2abc+a^2b+a^2c+ab^2+b^2c+bc^2+ac^2\left(1\right)\)
\(\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=a^2+ac+ab+bc\left(b+c\right)\)
\(=a^2b+abc+ab^2+b^2c+a^2c+ac^2+abc+bc^2\)
\(=2abc+a^2b+ab^2+b^2c+a^2c+ac^2+bc^2\left(2\right)\)
Từ (1)(2) => đpcm
đẽ thu gọn vế vd a) ta có vt: ( x-y) .(x+y)=x^2 -y^2
=vp
->dpcm
b) (x-y) . (x^3 +xy^2 +x^2y+y^3)
=(x-y ).(x^3 + y^3)
= x.x^3 -y.y^3
=x^4 - y^4 =vp
->dpcm
c) (a +b+ c) (ab +bc +ac) -abc
=nhân vô rút gọn
=(a^2b +2abc +c^b) +(a^2c+c^2a) + (ab^2+b^2c )
=b(a+c)^2 +ac(a+c) +b^2 (a+c)
=(a+c).[b(a+c)+b^2 +ac+b^2]
=(a+c)(ab+b^2+bc+ac)
=(a+c) [b(a+b)+c(a+b)]
=(a+b)(a+c)(b+c)=vp
->dpcm
a ) VP = \(\left(x+a\right).\left(x+b\right)=x^2+bx+ax+ab\)
VT = \(x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\)
\(\Rightarrow VT=VP\)
b ) VP : \(\left(x+a\right).\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\) ( Vế đầu áp dụng luôn ở câu a )
\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)
\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)
\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)
Vậy \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)
a) VP =\(\left(x+a\right)\left(x+b\right)=x^2+bx+\text{ax+ab}\)
\(VT=x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\\ =>VT=VP\)
b) VP : \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)( Vế đầu áp dụng luôn ở câu a )
\(=x^2.x+x^2.c+bx.x+bx.c+\text{ax}.x+\text{ax}.c+ab.c+ab.c\\ =x^3+cx^2+bx^2-cbx+\text{ax}^2+ca.x+ab.x+abc\\ \)
\(=x^3+\left(cx^2+bx^2+\text{ax}^2\right)-\left(cbx+c\text{ax}+abx\right)+abc\\ =x^3-\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)
Vậy \(\left(x+a\right)\left(x-b\right)\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)