Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)
\(=\dfrac{19}{2}x^2-6x-22\)
Vậy biểu thức trên phụ thuộc vào biến x.
b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)
Giải:
VT = \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3+y^2+y-y^2-y-1\)
\(=y^3-1\)
Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).
Giải:
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)
Vậy biểu thức trên phụ thuộc vào biễn x
b) \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3-y^2+y^2-y+y-1\)
\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)
\(=y^3-1\)
Vậy ...
\(a,\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)
\(b,\left(x^2+y^2\right)-4x^2y^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
x4 + y4 +(x+y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 +4xy3 + y4 = 2x4 +2y4 +4x2y2+4x3y+4xy3+2x2y2
= 2(x4 +y4 +2x2y2)+4xy(x2+y2) + 2x2y2= 2(x2 + y2)2 + 4xy(x2 + y2) +2x2y2
=2((x2 +y2) +2xy(x2+ y2) +x2y2) = 2(x2 + y2 + xy)2 \(\Rightarrow\) đpcm
C/M: \(\left(x+y\right)^4+x^4+y^4=2\left(x^2+xy+y^2\right)^2\)
\(VT=x^4+4x^3y+6x^2y^2+4xy^3+y^4+x^4+y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2\left(x^2+xy+y^2\right)^2\) = VP (đpcm)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
3) Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)
a)\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\left(đccm\right)\)
1, \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)
Biến đổi VT :\(\left(xy+z\right)^2-x^2y^2\)
\(=x^2y^2+2xyz+z^2-x^2y^2\)
\(=2xyz+z^2\)
\(=z\left(2xy+z\right)\) = VP
Vậy \(\left(xy+z\right)^2-x^2y^2=z\left(2xy+z\right)\)
2, \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)
Biến đổi VT: \(\left(x^2+y^2\right)^2-4x^2y^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4-2x^2y^2+y^4\)
Biến đổi VP: \(\left(x+y\right)^2\left(x-y\right)^2\)
\(=\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)\)
\(=x^4-2x^3y+x^2y^2+2x^3y-4x^2y^2+2xy^3+x^2y^2-2xy^3+y^4\)\(=x^4-2x^2y^2+y^4\)
Ta có VT = VP
Vậy \(\left(x^2+y^2\right)^2-4x^2y^2=\left(x+y\right)^2\left(x-y\right)^2\)
1 ) \(VT=\left(xy+z\right)^2-x^2y^2\)
\(=x^2y^2+2xyz+z^2-x^2y^2\)
\(=2xyz+z^2\)
\(=z\left(2xy+z\right)=VP\left(đpcm\right)\)
2 ) \(VT=\left(x^2+y^2\right)^2-4x^2y^2\)
\(=x^4+2x^2y^2+y^4-4x^2y^2\)
\(=x^4+y^4-2x^2y^2\)
\(=\left(x^2-y^2\right)^2\)
\(=\left[\left(x-y\right)\left(x+y\right)\right]^2\)
\(=\left(x-y\right)^2\left(x+y\right)^2=VP\left(đpcm\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2+y^2\right)\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x^2+2y^2=2\left(x^2+y^2\right)\left(đúng\right)\)