K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Có a = b+1

=> a - b =1

=> (a-b)(a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = (a-b)(a^64-b^64)

=> (a^2-b^2)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = 1 . (a^64 - b^64)

=> (a^4-b^4)(a^4+b^4)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64

=> (a^8-b^8)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64

=> (a^16-b^16)(a^16+b^16)(a^32+b^32) = a^64 - b^64

=> (a^32-b^32)(a^32+b^32) = a^64 - b^64

=> a^64-b^64 = a^64 - b^64

=> đpcm

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Sao tự nhiên lại lòi ra số c vậy?

30 tháng 8 2017

mình ko biết đề bài nó như z

3 tháng 8 2019

Từ đầu bài 

=> 1.\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\) \(+...+\left(a^{32}+b^{32}\right)\)\(a^{64}-b^{64}\)

=> \(\left(a-b\right)\left(a+b\right)+...+\left(a^{32}+b^{32}\right)\)\(a^{64}+b^{64}\)

=> \(\left(a^2-b^2\right)\left(a^2+b^2\right)+...+\left(a^{32}+b^{32}\right)\)= a^64 + b^64

tương tự sẽ ra kết quả cuối là \(\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\left(đpcm\right)\)

26 tháng 6 2016

ta có \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) => \(\frac{a^2-b^2}{a-b}=a+b\)

        \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)\)=> \(\frac{a^4-b^4}{a^2-b^2}=a^2+b^2\) 

        \(a^8-b^8=\left(a^4-b^4\right)\left(a^4+b^4\right)\) => \(\frac{a^8-b^8}{a^4-b^4}=a^4+b^4\)

        ...............................................................................................

        \(a^{64}-b^{64}=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\) => \(\frac{a^{64}-b^{64}}{a^{32}-b^{32}}=a^{32}+b^{32}\)

thay vào ta được 

\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)......\left(a^{32}+b^{32}\right)\)

\(=\frac{a^2-b^2}{a-b}.\frac{a^4-b^4}{a^2-b^2}.\frac{a^8-b^8}{a^4-b^4}.............\frac{a ^{64}-b^{64}}{a^{32}-b^{32}}\)

\(=\frac{a^{64}-b^{64}}{a-b}\)

mà a-b= 1 nên \(\frac{a^{64}-b^{64}}{a-b}=a^{64}-b^{64}\)

       

NV
24 tháng 9 2020

\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)

\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

24 tháng 7 2017

a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)

\(=4a^2+4b^2+4c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

24 tháng 7 2017

b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)

\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)

\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)

\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)

\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)

\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(=3.2a.2b.2c\)

\(=24abc\) (đpcm)

18 tháng 4 2016

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)