K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

31 tháng 8 2018

Giải theo kiểu lớp 8 cho chắc :v

Ta có : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow\dfrac{3a^2+3b^2+3c^2}{9}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Đúng )

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c\)

31 tháng 8 2018

Áp dụng BĐT Cauchy - schwarz dưới dạng engel ta có :

\(\dfrac{a^2+b^2+c^2}{3}=\dfrac{a^2}{3}+\dfrac{b^2}{3}+\dfrac{c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}=\left(\dfrac{a+b+c}{3}\right)^2\)

Dấu \("="\) xảy ra khi \(a=b=c\)

27 tháng 8 2020

a) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(a-b\right)^2.\left(a+b\right)^2\)( đpcm )

b) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-b+b-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)+\left(c-a\right)^3\)

\(-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-c\right)^3+\left(c-a\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-c\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(=\left(a-c\right)^3-\left(a-c\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)-3\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)( đpcm )

27 tháng 8 2020

1) Ta có: \(\left(a^2+b^2\right)^2-4a^2b^2\)

\(=a^4+2a^2b^2+b^4-4a^2b^2\)

\(=a^4-2a^2b^2+b^4\)

\(=\left(a^2-b^2\right)^2\)

\(=\left[\left(a-b\right)\left(a+b\right)\right]^2\)

\(=\left(a-b\right)^2\left(a+b\right)^2\)

2) Ta có: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=\left(a-b+b-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]+\left(c-a\right)^3\)

\(=\left(a-c\right)\left(a^2-2ab+b^2-ab+ac+b^2-bc+b^2-2bc+c^2\right)+\left(c-a\right)^3\)

\(=-\left(c-a\right)\left(a^2+3b^2+c^2-3ab+ac-3bc\right)+\left(c-a\right)\left(c^2-2ca+a^2\right)\)

\(=\left(c-a\right)\left(c^2-2ca+a^2-a^2-3b^2-c^2+3ab-ac+3bc\right)\)

\(=\left(c-a\right)\left(3ab+3bc-3b^2-3ac\right)\)

\(=3\left(c-a\right)\left(ab-b^2-ac+bc\right)\)

\(=3\left(c-a\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

14 tháng 9 2017

Giải : 

a3 + b3 + a2c + b2c - abc

= ( a3 + b3 ) + ( a2c + b2c - abc )

= ( a + b ) ( a2 - ab + b2 ) + c ( a2 - ab + b2 ) 

= ( a2 - ab + b2 ) ( a + b + c )

Vì a + b + c = 0 , nên ( a + b + c  ) ( a2 - ab + b2 ) = 0

Do đó a3 + b3+ a2c + b2c - abc = 0

14 tháng 9 2017

=a ^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a =a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a = -a^2b-abc-b^2a = -ab(a+b+c)=-ab 0 =0 vậy đa thức này bằng 0 

9 tháng 8 2019

a)    \(\left(A+B\right)^2=\left(A+B\right)\left(A+B\right)=A^2+AB+AB+B^2=A^2+2AB+B^2\)

b)  \(\left(A+B\right)^3=\left(A+B\right)^2\left(A+B\right)=\left(A^2+2AB+B^2\right)\left(A+B\right)\)( NHÂN  ra nốt hộ mk nha ) :D !

c)\(\left(A+B\right)\left(A-B\right)=A^2+AB-AB-B^2=A^2-B^2\)

ý d tương tự nha :D !