K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10

29 tháng 8 2017

2.

a) \(x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)

\(\Rightarrow x^3+x^2+x-x^3-x^2-x+5\)

\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)

\(=5\)( vì kết quả bằng 5 nên đa thức không phụ thuộc vào biến )

b) \(x.\left(2x+1\right)-x^2.\left(x+2\right)+x^3-x+3\)

\(\Rightarrow2x^2+x-x^3-2x^2+x^3-x+3\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)

\(=3\)( vì kết quả bằng 3 nên đa thức không phụ thuộc vào biến )

c) \(4.\left(6+x\right)+x^2.\left(2+3x\right)-x.\left(5x+4\right)+3x^2.\left(1-x\right)\)

\(\Rightarrow24+4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)

\(\Rightarrow24+\left(4x-4x\right)+\left(2x^2-5x^2+3x^2\right)+\left(3x^3-3x^3\right)\)

\(=24\)( vì kết quả bằng 24 nên đa thức không phụ thuộc vào biến )

19 tháng 8 2020

làm ơn giúp mình với

19 tháng 8 2020

A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) (  3x + 7 )

=> A = 6x2 + 23x - 55 - 6x- 23x - 21

=> A = - 55 - 21

=> A = - 76 ( không phụ thuộc vào biến x )

B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )

=> B = 8x3 + 27 - 8x3 + 2

=> B = 27 + 2

=> B = 29 ( không phụ thuộc vào biến x )

C = ( x - 1 )3 - (  x + 1 )3 + 6 ( x + 1 ) ( x - 1 )

=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

=> C = - 6x2 - 2 + 6x2 - 6

=> C = - 2 - 6

=> C = - 8 ( không phụ thuộc vào biến x )

15 tháng 6 2016

a)x(x2+x+1) - x2(x+1) - x+5

=x3+x2+x-x3-x2-x+5

=(x3-x3)+(x2-x2)+(x-x)+5

=5

b)câu này có 3 cái ngoặc là sao

c)4(6 - x) +x2(2+3x) - x(5x - 4) + 3x2(1 - x) 

=24-4x+3x2+2x2-4x-5x2+3x2-3x2

=24

16 tháng 6 2016

MÌnh viết thiếu tí , như thế này là đúng đề bài nè:

b. x(2x+1) - x2(x+2) + x3 - x + 3

29 tháng 6 2018

\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)

\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)

\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)

\(=0\left(đpcm\right)\)

\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)

\(=0\left(đpcm\right)\)

6 tháng 10 2020

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)

=> đpcm

b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)

\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)

\(B=\frac{2}{27}\)

=> đpcm

c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)

\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)

\(C=0\)

=> đpcm

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

a. $A=(x-1)^3-(x+1)^3+6(x+1)(x-1)$

$=(x^3-3x^2+3x-1)-(x^3+3x^2+3x+1)+6(x^2-1)$

$=-6x^2-2+6x^2-6=-8$ không phụ thuộc vào giá trị của biến $x$.

b.

$B=(2x+3)(4x^2-6x+9)-2(4x^3-1)=(2x)^3+(3^3)-8x^3+2$

$=8x^3+27-8x^3+2=29$ không phụ thuộc vào giá trị của biến $x$.