K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Ta có : A = x2 - 8x + 20

=> A = x2 - 8x + 16 + 4

=> A = (x - 4)2 + 4

Mà ; (x - 4)2 \(\ge0\forall x\)

Nên : A  = (x - 4)2 + 4 \(\ge4\forall x\)

Vậy Amin = 4 , dấu "=" xảy ra khi và chỉ khi x = 4

12 tháng 7 2017

Ta có : 4x2 - 12x + 11

= (2x)2 - 12x + 9 + 2

= (2x - 3)2 + 2

Mà : (2x - 3)2 \(\ge0\forall x\) 

Nên : (2x - 3)2 + 2 \(\ge2\forall x\)

Vậy (2x - 3)2 + 2 \(>0\forall x\)

4 tháng 9 2021

Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM

mình làm rồi nhé, bạn kham khảo link 

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

1 tháng 8 2023

Mình cảm ơn nha

 

19 tháng 8 2021

x^2-8x+20=(x^2-8x+16)+4

                 =(x-4)^2+4>0(vì (x-4)^2>=0)

4x^2-12x+11=4x^2-12x+9+2

                     =(2x-3)^2+2>0

x^2-x+1=x^2-x+1/4+3/4

             =(x-1/2)^2+3/4>0

x^2-2x+y^2+4y+6

=x^2-2x+1+y^2+4y+4+1

=(x-1)^2+(y+2)^2+1>0

a: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(4x^2-12x+11\)

\(=4x^2-12x+9+2\)

\(=\left(2x-3\right)^2+2>0\forall x\)

c: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

d: Ta có: \(x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

12 tháng 10 2020

\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)

=> Chưa thể khẳng định A dương

\(B=9x^2-6xy+2y^2+1\)

\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)

\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

\(C=x^2-2x+y^2+4y+6\)

\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

9 tháng 8 2016

A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương

B = x2 - x + 1 = x2  - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương

C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương

9 tháng 8 2016

A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương

B = x2 - x + 1 = x2  - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương

C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương

K cho mình nha !!!!!!!!!!!!

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

4 tháng 9 2021

\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\forall x\)

Vậy ta có đpcm 

\(B=4x^2-12x+11=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\forall x\)

Vậy ta có đpcm 

\(C=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Vậy ta có đpcm 

NM
4 tháng 9 2021

\(\hept{\begin{cases}A=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\\B=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\\C=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)