Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM
mình làm rồi nhé, bạn kham khảo link
chứng minh các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a)E=12x-4x^2-11 b)F=x-x^2-1
chứng minh các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a)E=12x-4x^2-11 b)F=x-x^2-1
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương
B = x2 - x + 1 = x2 - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương
C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương
A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương
B = x2 - x + 1 = x2 - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương
C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương
K cho mình nha !!!!!!!!!!!!
Ta có : A = x2 - 8x + 20
=> A = x2 - 8x + 16 + 4
=> A = (x - 4)2 + 4
Mà ; (x - 4)2 \(\ge0\forall x\)
Nên : A = (x - 4)2 + 4 \(\ge4\forall x\)
Vậy Amin = 4 , dấu "=" xảy ra khi và chỉ khi x = 4
Ta có : 4x2 - 12x + 11
= (2x)2 - 12x + 9 + 2
= (2x - 3)2 + 2
Mà : (2x - 3)2 \(\ge0\forall x\)
Nên : (2x - 3)2 + 2 \(\ge2\forall x\)
Vậy (2x - 3)2 + 2 \(>0\forall x\)
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
a) \(A=x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
Vì \(\left(x+3\right)^2\ge0\forall x\) nên \(\left(x+3\right)^2+6>0\forall x\)
Vậy ...
b) \(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10>0\forall x\) (trình bày như trên)
Vậy ...
a) \(-9x^2+12x-15\)
\(=-9x^2+12x-4-11\)
\(=-\left(3x-2\right)^2-11\)
Vì \(-\left(3x-2\right)^2\le0\forall x\) nên \(-\left(3x-2\right)^2-11< 0\forall x\)
Vậy ...
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-x^2-x+2-5\)
\(=-x^2-x-3\)
\(=-x^2-x-\dfrac{1}{4}-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}>0\forall x\)
Vậy ...
\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\forall x\)
Vậy ta có đpcm
\(B=4x^2-12x+11=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\forall x\)
Vậy ta có đpcm
\(C=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy ta có đpcm
\(\hept{\begin{cases}A=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\\B=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\\C=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)