Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)
b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)
\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)
c)
\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)
Câu cuối đề bài sai
a) \(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)
b) \(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)
c) \(tan^2\alpha\left(2sin^2\alpha+3cos^2\alpha-2\right)=tan^2\alpha\left[cos^2\alpha+2\left(sin^2\alpha+cos^2\alpha\right)-2\right]=\dfrac{sin^2\alpha}{cos^2\alpha}\times cos^2\alpha=sin^2\alpha\)
a)
\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)
b)\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)
c) mình chưa rõ đề nha
tui rất thích lượng giác:
a) = s2 + 2s.c +c2 +s2- 2s.c + c2 =1+1=2
b) = s.c(s/c + c/s) = s.c(s2 + c2) / s.c = 1
.............................bài nào cx dễ
( k có việc j khó, chỉ sợ lòng k bền....)
+) ta có : \(A=\left(tan\alpha+cot\alpha\right)^2-\left(tan\alpha-cot\alpha\right)^2\)
\(=tan^2\alpha+cot^2\alpha+2-tan^2\alpha-cot^2\alpha+2=4\) (không phụ thuộc vào \(\alpha\)) \(\Rightarrow\) (đpcm)
+) ta có : \(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha.cos^2\alpha\)
\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(=\left(\left(sin^2\alpha+cos^2\alpha\right)^2-3sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\) (đpcm)