Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )
c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
\(A=x^2+2y^2-2xy-2y+15\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+14>14>0\)
Vậy : \(A>0\)
a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)
các câu khác dùng phương pháp tương tự
a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4
Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0
b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4
Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0
c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4
Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0
d) x^2 + y^2 -2x-2y + 2xy +1
= ( x^2 + 2xy + y^2) - 2( x+y) +1
= ( x+y)^2 -2(x+y) +1
= (x +y +1)^2 >=0
g) x^2+y^2+2(x-2y)+6
= (x^2 + 2x +1) + (y^2 -4y+4) +1
= ( x+1)^2 + (y-2)^2 +1
Vì (x+1)^2; (y-2)^2 >= 0 => ( x+1)^2 + (y-2)^2 +1>=1>0
1/
\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)
\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)
\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)
2/
\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)
\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)
\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x