K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

21 tháng 3 2022

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

4 tháng 4 2020

3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v

Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities

Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.

Bài 3: Tí check đề cái đã.

4 tháng 4 2020

Bài 3: Biết lắm mà: Check: \(a=b=1;c=\frac{1}{2}\) thì \(VT-VP=-\frac{1}{8}< 0\)

P/s: Nếu bạn sửa đề, hãy đăng vào bên dưới câu hỏi bạn nhé! Để người đọc còn hiểu mình đang trả lời cái nào:D

7 tháng 1 2019

\((\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ba-c^2-ca\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+cb-a^2-ab\right)}=0 \)

\(\Leftrightarrow\dfrac{1}{\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]}+\dfrac{1}{\left(c-a\right)\left[\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\right]}+\dfrac{1}{\left(a-b\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]}=0\)

\(\Leftrightarrow\dfrac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\dfrac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\dfrac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)(t/m)

Suy ra ta được Đt cần chứng minh.

Chúc bạn học tốt với hoc24 nhahaha

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Ta có:

\(\frac{1}{(b-c)(a^2+ac-b^2-bc)}+\frac{1}{(c-a)(b^2+bc-c^2-ca)}+\frac{1}{(a-b)(c^2+cb-a^2-ab)}\)

\(=\frac{1}{(b-c)[(a^2-b^2)+(ac-bc)]}+\frac{1}{(c-a)[(b^2-c^2)+(ba-ca)]}+\frac{1}{(a-b)[(c^2-a^2)+(cb-ab)]}\)

\(=\frac{1}{(b-c)[(a-b)(a+b)+c(a-b)]}+\frac{1}{(c-a)[(b-c)(b+c)+a(b-c)]}+\frac{1}{(a-b)[(c-a)(c+a)+b(c-a)]}\)

\(=\frac{1}{(b-c)(a-b)(a+b+c)}+\frac{1}{(c-a)(b-c)(b+c+a)}+\frac{1}{(a-b)(c-a)(c+a+b)}\)

\(=\frac{(c-a)+(a-b)+(b-c)}{(a-b)(b-c)(c-a)(a+b+c)}=\frac{0}{(a-b)(b-c)(c-a)(a+b+c)}=0\)

Ta có đpcm.

17 tháng 7 2017

Ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

Cộng vế với vế 3 bất đẳng thức trên ta có:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\) xảy ra khi \(a=b=c\)

CHÚC BẠN HỌC TỐT........

17 tháng 7 2017

ta có : \(\left(a-b-c\right)^2\ge0\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca\ge0\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ab+2bc+2ca\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge2\left(ab+bc+ca\right)\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\forall a;b;c\)

vậy \(a^2+b^2+c^2\ge ab+bc+ca\) với mọi \(a;b;c\) (đpcm)

5 tháng 2 2018

a) Áp dụng bất đẳng thức AM-GM : 

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)

b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)

 \(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)

Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)

23 tháng 4 2017

A)

\(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\\ \Leftrightarrow2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\)

\(2A^2+2B^2\ge A^2+2AB+B^2\\ \Leftrightarrow A^2+B^2\ge2AB\\ \Leftrightarrow A^2+B^2-2AB\ge0\)

\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (1)

\(A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow A^2+B^2\ge2BA\\ \Leftrightarrow A^2+B^2-2BA\ge0\)

\(\Leftrightarrow\left(A-B\right)^2\ge0\) (LUÔN ĐÚNG) (2)
Từ (1), (2) ta có: \(2A^2+2B^2\ge A^2+2AB+B^2\ge2AB+2BA\\ \Leftrightarrow2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\left(đpcm\right)\)