K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Sửa đề:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Xét hiệu:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)-\left(ax+by+cz\right)^2\)

\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz\)

\(=a^2y^2+a^2z^2+b^2z^2+b^2x^2+c^2y^2+c^2x^2-2axby-2bycz-2axcz\)

\(=\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)\)

\(=\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)

=> BĐT luôn đúng

2 tháng 4 2018

Cái này là bu cmnr ;v

11 tháng 2 2019

Câu b search google bđt Min-cốp-xki thẳng tiến

4 tháng 2 2019

Chị ơi!

19 tháng 6 2019

VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)

=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)

=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)

30 tháng 3 2018

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

3 tháng 4 2018

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

2 tháng 7 2019

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(\left(ax+by+cz\right)^2\)

\(=c^2z^2+2bcyz+2acxz+b^2y^2+2abxy+a^2x^2\)

\(\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)\(\ge\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(\ge c^2z^2+2bcyz+2acxz+b^2y^2+2abxy+a^2x^2\)

\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)

\(\ge2bcyz+2acxz+2abxy\)

\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)\(-2bcyz-2acxz-2abxy\ge0\)

\(\Leftrightarrow\left(a^2y^2-2abxy+b^2x^2\right)+\left(a^2z^2-2acxz+c^2x^2\right)\)

\(+\left(b^2z^2-2bcyz+c^2y^2\right)\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)

(Điều trên đúng vì \(\hept{\begin{cases}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{cases}}\))

Vậy\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\) \(\ge\left(ax+by+cz\right)^2\)