K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

\(A=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)+\left(y^2-22y+121\right)+2\\ A=\left(x-2y\right)^2+\left(x+5\right)^2+\left(y-11\right)^2+2\ge2>0\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:
Ta có:

\(A=x^2+4xy+5y^2+10x-22y+28\)

\(=(x^2+4xy+4y^2)+y^2+10x-22y+28\)

\(=(x+2y)^2+2.5(x+2y)+5^2+y^2-42y+3\)

\(=(x+2y+5)^2+y^2-42y+3\)

\(=(x+2y+5)^2+(y^2-42y+21^2)-438\)

\(=(x+2y+5)^2+(y-21)^2-438\)

\(\geq 0+0-438=-438\)

Vậy \(A_{\min}=-438\Leftrightarrow \left\{\begin{matrix} x+2y+5=0\\ y-21=0\end{matrix}\right.\Leftrightarrow x=-47; y=21\)

10 tháng 7 2019

E=(4x^2-4x+1)+(9y^2+6y+1)+(16z^2+8z+1)+1

E=(2x-1)^2+(3y-1)^2+(4z+1)^2+1

Vì (2x-1)^2>=0

      ........>=0

       .........>=0

nên E>= 1.dấu = xảy ra khi x=1/2

  y=1/3

z=1/4

6 tháng 8 2016

a)

2x2+2x+1

=(x+1)2+x2

(x+1)luôn lớn hơn hoặc =0 

dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1

x2 luôn lớn hơn hoặc =0

dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1

vậy biểu thức này có giá trị dương ( >0 )  với mọi giá trị của biến

b)9x2-6x+2

=(3x+1)+1

ta có: (3x+1)2 luôn lớ hơn hoặc =0

=> (3x+1)2+1 luôn lớn hơn hoặc =1

=> (3x+1)^2+1 luôn dương với mọi giá trị của biến

 

6 tháng 8 2016

a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)

Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\)  với mọi x

=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)

Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến

b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)

Vì: \(\left(3x-1\right)^2\ge0\)  với mọi giá trị của x

=> \(\left(3x-1\right)^2+1>0\)

vậy biểu thức trên luôn luôn dương với mọi giá trị của x

24 tháng 8 2018

A = ( x2 - 4x + 4 ) + ( y2 + 2y + 1 ) + 7 

   = ( x - 2 )2  + ( y + 1 )2 + 7 luôn dương nhé ( vì hai bình phương cộng thêm 7  lớn hơn 0 )

24 tháng 8 2018

\(A=x^2-4x+y^2+2y+12=x^2-4x+4+y^2+2y+1+7\)

   \(=\left(x-2\right)^2+\left(y+1\right)^2+7\ge7\)với mọi x,y

Do đó A luôn dương với mọi x,y

                            

7 tháng 10 2018

      \(2x^2+y^2+10x-4y\ge2xy-13\) (1)

\(\Leftrightarrow2x^2+y^2+10x-4y-2xy+13\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+6x+9\ge0\)

\(\Rightarrow\left(x-y\right)^2+2.\left(x-y\right).2+2^2+x^2+2.x.3+3^2\ge0\)

\(\Rightarrow\left(x-y+2\right)^2+\left(x+3\right)^2\ge0\)(2)

Ta thấy (2) luôn đúng mà \(\left(2\right)\Leftrightarrow\left(1\right)\)nên (1) luôn đúng

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}x-y+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)

8 tháng 4 2018

\(A=\dfrac{2x^2+2y^2+12xy}{x+y}=\dfrac{\left(2x^2+2y^2+4xy\right)+8xy}{x+y}=\dfrac{2\left(x+y\right)^2+2}{x+y}\)

Đặt x + y = t (t > 0)

\(\Rightarrow A=\dfrac{2t^2+2}{t}=\dfrac{\left(2t^2-4t+2\right)+4t}{t}=\dfrac{2\left(t-1\right)^2}{t}+4\ge4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=1\\xy=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

8 tháng 4 2018

Cảm ơn bạn nhé