K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

a)

\((a+b+c)^3-a^3-b^3-c^3=[(a+b)+c]^3-a^3-b^3-c^3\)

\(=(a+b)^3+3(a+b)^2c+3(a+b)c^2+c^3-a^3-b^3-c^3\)

\(=a^3+3ab(a+b)+b^3+3(a+b)^2c+3(a+b)c^2+c^3-a^3-b^3-c^3\)

\(=3ab(a+b)+3(a+b)^2c+3(a+b)c^2\)

\(=3(a+b)[ab+c(a+b)+c^2]\)

\(=3(a+b)(ab+ca+bc+c^2)=3(a+b)[a(b+c)+c(b+c)]\)

\(=3(a+b)(a+c)(b+c)\)

b)

Áp dụng kết quả phần a: Nếu $a+b+c=0$ thì:

\(0^3-a^3-b^3-c^3=3(0-c)(0-a)(0-b)\)

\(\Leftrightarrow -(a^3+b^3+c^3)=-3abc\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

27 tháng 7 2017

b) Xét VP ta có :

\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+ab^2+ac^2-ab^2-abc-ca^2+ba^2+b^3+bc^2-ab^2-bc^2-abc+ca^2+cb^2+c^3-abc-bc^2-c^2a\)

\(=a^3+b^3+c^3-abc-abc-abc\)

\(=a^3+b^3+c^3-3abc\)

\(=VT\)

Vậy đẳng thức đã được Cm

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

28 tháng 11 2019

Câu hỏi của nguyen van quyen - Toán lớp 8 - Học toán với OnlineMath

9 tháng 11 2015

cau 1 ne:
a^2 + b^2 + c^2 + 3
theo bat dang thuc cosi ban se co
a^2 + a + 1 >= 3a
b^2 + b + 1 >= 3b
c^2 + c + 1 >= 3c
cong 3 ve bat dang thuc lai voi nhau ban se co
a^2 + b^2 + c^2 + (a + b + c) + 3>= 3(a + b + c)
=> a^2 + b^2 + c^2 + 3 >= 2(a + b + c)
dau = xay ra <=> a=  b= c = 1
ma theo de bai ta lai co a^2 + b^2 + c^2 + 3 = 2(a + b + c)
=> a = b = c = 1 (dpcm)
b) (a - b)^2 + (b-c)^2 + (c - a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
hay (a + b - 2b)^2 + (b + c - 2c)^2 + (c + a - 2a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
dat. a + b = A
 b + c = B
c + a = C
=> ban se co:
(A - 2b)^2 + (B - 2c)^2 + (C - 2a)^2 = (A - 2c)^2 + (B - 2a)^2 + (C - 2b)^2
tu day ban nhan pha ra roi rut gon 2 ve cho nhau ban se co
Ab + Bc + Ca = Ac + Ba + Cb
hay (a + b)b + (b + c)c + (c + a)a = (a + b)c + (b + c)a + (c + a)b
hay ab + b^2 + bc + c^2 + ac + a^2 = 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 - ab - bc - ac = 0
hay 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
hay (a-b)^2 + (b-c)^2 +(c - a)^2 = 0
dau = xay ra <=> a = b = c (dpcm)
c) a^3 + b^3 + c^3 + d^3 = (a + b)(a^2 -ab +b^2) + (c+d)(c^2 - cd + d^2) (**)
ban nhan thay a + b + c + d = 0
=> a + b = - c - d
thay vao pt (**) ban se co
-(c + d)(a^2 - ab + b^2) + (c + d)(c^2 - cd + d^2)
(c + d)(c^2 - cd + d^2 -a^2 + ab - b^2)
hay (c + d)(ab - cd + (c^2 + d^2 - a^2 - b^2)) (***)
ban co a + b = - c - d
hay (a + b)^2 = (c + d)^2
hay a^2 + b^2 + 2ab = c^2 + d^2 + 2cd
hay c^2 + d^2 - a^2 - b^2 = 2ab - 2cd
thay vao pt (***) ban se co
(c + d)(ab - cd + 2ab - 2cd)
hay (c +d)(3ab - 3cd) = 3(c+d)(ab - cd) (dpcm)
 

12 tháng 12 2015

hại nao ghê

 

26 tháng 10 2014

Ông tự ra thì ông tự giải.Đừng giải nữa anh chị ơi
 

22 tháng 10 2018

a/ \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)

\(a+b+c=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

22 tháng 10 2018

còn câu b thì sao bn, giúp nhanh nhanh mk vs

14 tháng 7 2019

1.từ bt trên ta có thể suy ra

=a^2+c^2+b^2+2ab+2ac+2bc+a^2+b^2+c^2

=(a+b)^2+(b+c)^2+(a+c)^2