Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có :
\(A=n^3-7n\)
\(=\left(n^3-n\right)-6n\)
\(=n.\left(n^2-1\right)-6n\)
\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)
Ta biến đổi như sau : \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left[\left(m-1\right)\left(m+1\right)-\left(n-1\right)\left(n+1\right)\right]\)
\(=n.\left(m-1\right).m.\left(m+1\right)-m.\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(m-1\right).m.\left(m+1\right)\) và \(\left(n-1\right).n.\left(n+1\right)\) là các tích của ba số nguyên liên tiếp
nên chia hết cho cả 2 và 3 . Mà \(\left(2,3\right)=1\) nên các tích này chia hết cho 6.
Từ đó suy ra điều phải chứng minh :)
Ta có
A = mn(m2 - n2) = mn(m - n)(m + n)
Ta chứng minh A chia hết cho 2
Với m,n có 1 số chẵn thì A chia hết cho 2
Với m,n đều là lẻ thì (m - n) chia hết cho 2
=> A chia hết cho 2 (1)
Chứng minh chia hết cho 3
Với m,n có 1 số chia hết cho 3 thì A chia hết cho 3
Với m,n cùng chia 3 dư 1 hoặc dư 2 thì (m - n) chia hết cho 3
Với m chia 3 dư 1 n chia 3 dư 2 (hoặc ngược lại thì (m + n) chia hết cho 3
=> A chia hết cho 3 (2)
Từ (1) và (2) kết hợp với 2 va 3 nguyên tố cùng nhau thì ta có A chia hết cho 6
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15