K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

câu a hình như bạn ghi sai đề rồi

câu b:

Ta có: \(x^2-4x+12=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\in Q\)

\(\Rightarrow\text{​​}\left(x-2\right)^2+8\ge8>0\forall x\in Q\)

Do đó: \(x^2-4x+12>0\forall x\in Q\)(đpcm)

24 tháng 10 2020

A = x2 + 6x + 11 = ( x2 + 6x + 9 ) + 2 = ( x + 3 )2 + 2 ≥ 2 > 0 ∀ x ( đã sửa )

B = x2 - 4x + 12 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 > 0 ∀ x ( đpcm )

C = x2 + 4x + 6 = ( x2 + 4x + 4 ) + 2 = ( x + 2 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

D = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

23 tháng 9 2016

Hình như bạn viết sai đề,câu a câu b có x^2 mới đúng chứ?

 

2 tháng 9 2021

a, chỉ có luôn ko dương thôi bạn ạ =)))

 \(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

2 tháng 9 2021

luôn âm chứ bạn :)\

3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )

6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

1 tháng 8 2018

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4>0\)

Vậy MIN A = 4   khi  x = -1

b)  \(B=x^2+4x+12=\left(x+2\right)^2+8\ge8>0\)

Vậy MIN  B = 8   khi  x = -2

c)  \(C=x^2+6x+31=\left(x+3\right)^2+22\ge22>0\)

Vậy MIN C = 22   khi  x = -3

d) \(D=4x^2+4x+35=\left(2x+1\right)^2+34\ge34>0\)

Vậy MIN  D = 34  khi  x = -1/2

1 tháng 8 2018

\(A=x^2+2x+5\)

\(A=\left(x^2+2.x.1+1^2\right)+4\)

\(A=\left(x+1\right)^2+4\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+4\ge4\forall x\)

\(\Rightarrow A>0\forall x\)

\(A=4\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(A_{min}=4\Leftrightarrow x=-1\)

\(B=x^2+4x+12\)

\(B=\left(x^2+2.x.2+2^2\right)+8\)

\(B=\left(x+2\right)^2+8\)

đến đó tương tự câu a

\(C=x^2+6x+31\)

\(C=\left(x^2+2.x.3+3^2\right)+22\)

\(C=\left(x+3\right)^2+22\)

đến đó tương tự câu a

\(D=4x^2+4x+35\)

\(D=\left(2x\right)^2+2.2x.1+1+34\)

\(D=\left(2x+1\right)^2+34\)

đến đó tương tự câu a

Tham khảo nhé~

2 tháng 10 2018

Mấy câu trên dễ

\(M=4a^2-6a+12\)

\(M=\left(2a\right)^2-2\cdot2a\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{39}{4}\)

\(M=\left(2a-\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\forall x\left(đpcm\right)\)

2 tháng 10 2018

1. a) 2x2y - 3xy2 - 6x + 9y = 2x( xy - 3 ) - 3y ( xy - 3) = ( 2x - 3y)(xy - 3)

b) x2 - 2x + 8 = x2 - 2x + 12 - 1 + 9 = ( x - 1 )2 + 32 ( xem lại đề bài )

2. a) ( 2x - 1) 2 - (2x-1)(2x+3) = 5

(2x-1)(2x-1-2x-3) = 5

-4(2x-1) = 5

2x - 1 = -1,25

2x = -0,25

x= -0,125

b) x(x-9 ) = 0

x= 0 hoặc x = 9

c, ko hiểu

3, M = (2a)2 - 2.2a.1,5 + ( 1,5)2 + 9,75

M= ( 2a - 1,5)2 + 9,75

Vì ( 2a - 1,5 )2 \(\ge\)\(\forall x\)

\(\Rightarrow\)( 2a - 1,5)2 + 9,75 \(\ge9,75\forall x\)

Vậy biểu thức trên luôn dương

24 tháng 10 2020

A = -x2 + x - 3 = -( x2 - x + 1/4 ) - 11/4 = -( x - 1/2 )2 - 11/4 ≤ -11/4 < 0 ∀ x ( đpcm )

B = -4x2 + 4x - 5 = -( 4x2 - 4x + 1 ) - 4 = -( 2x - 1 )2 - 4 ≤ -4 < 0 ∀ x ( đpcm )

C = -x2 + 4x - 6 = -( x2 - 4x + 4 ) - 2 = -( x - 2 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )