K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

4x2 + 3x + 2

= (2x)2 + 2.2x.3/4 + 9/16 + 23/16

= (2x)2 + 2.2x.3/4 + (3/4)2 + 23/16

= (2x + 3/4)2 + 23/16 \(\ge\)23/16

Vậy biểu thức trên luôn dương với mọi x.

2 tháng 6 2018

ko biết làm

2 tháng 6 2018

a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1

       =\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)

\(\Rightarrow\)A dương với mọi x,y

2 tháng 9 2021

a, chỉ có luôn ko dương thôi bạn ạ =)))

 \(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

2 tháng 9 2021

luôn âm chứ bạn :)\

3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )

6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

1 tháng 11 2019

\(x^2+y^2-4x-2\)

\(=x^2+y^2-4x+4-6\)

\(=\left(x^2-4x+4\right)+y^2-6\)

\(=\left(x-2\right)^2+y^2-6\ge-6\)

Xem lại đề nha, kết quả vẫn có thể âm mà

6 tháng 7 2017

Ta có : C = 4x2 + 4y2 - 8x + 4y + 427

=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422

=> C = (2x - 2)2 + (2y + 1)2 + 422

Mà \(\left(2x-2\right)^2\ge0\forall x\)

       \(\left(2y+1\right)^2\ge0\forall x\)

Nên C = (2x - 2)2 + (2y + 1)2 + 422  \(\ge422\forall x\)

Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)

Vậy C luôn luôn dương (đpcm)

31 tháng 7 2016

A = 3 ( X^2 - 3/5 X + 1) = 3 ( X - 5/6 )^2 + 11/12 > 0 => đpcm
B = 4 (x^2 + 3/4 x + 1/2 ) = 4 (x+3/8)^2 + 23/16 > 0 => đpcm

22 tháng 10 2015

Ta có : 3x^2+5y^2-4xy-4x+4y+7

= x2-4xy+4y2+2x2-4x+2+y2+4y+4+1

= (x-2y)2+2(x2-2x+1)+(y+2)2+1

= (x+2y)2+2(x-1)2+(y+2)2+1 > 1 (với mọi x,y)

 hay (x+2y)2+2(x-1)2+(y+2)2+1  >0 (với mọi x,y)

Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )