K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)=x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)

                                                                            =\(6x^2+2-6x^2+6=8\)ko phụ thuộc vào x

21 tháng 6 2016

thanks bạn nhìu 

 

23 tháng 10 2015

A = ( x-2 )- (x-3)*(x-1)

A= x2 -4x -4 - x2 +x +3x -3

A= 1

Vậy A ko phụ thuộc vào biến x

\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2+1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)

\(=-6x^2-2+6x^2-6\)

\(=-8\)

Vậy biểu thức không phụ thuộc vào biến

20 tháng 8 2021

\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6=-8\)

Vậy biểu thức ko phụ thuộc vào giá trị biến x 

20 tháng 9 2019

Bạn khai triển hằng đẳng thức (x-y-1)^3-(x-y+1)^3 với dạng A^3-B^3 rồi rút từ từ là ra thôi

27 tháng 9 2020

Ta có (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)

= x3 - 3x2 + 3x - 1 - (x3 + 3x2 + 3x + 1) + 6(x2 - 1)

= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

= -6x2 - 2 + 6x2 - 6

= -8 

=> Biểu thức trên không phụ thuộc vào biến (đpcm)

27 tháng 9 2020

Ta có: \(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)

\(=\left(-3x^2-3x^2+6x^2\right)+\left(x^3-x^3\right)+\left(3x-3x\right)+\left(-1-1-6\right)\)

\(=-8\)

=> đpcm

2 tháng 2 2020

\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow B=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)

\(\Leftrightarrow B=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)

\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(-3x^2-3x^2+6x^2\right)+\left(3x-3x\right)+\left(-1-1-6\right)\)

\(\Leftrightarrow B=-8\)

Vậy biểu thức trên không phụ thuộc vào biến x (Đpcm)

3 tháng 9 2019

Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=1-2x^2y^2\)

Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)

Thế vào ta được

\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)

Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không 

Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)