K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

Lời giải:

Ta có:

$3x^2+5y^2-4xy-4x+4y+7=2x^2+y^2+(x^2+4y^2-4xy)-4x+4y+7$

$=(2x^2-4x+2)+(y^2+4y+4)+(x^2+4y^2-4xy)+1$

$=2(x^2-2x+1)+(y^2+4y+4)+(x^2+4y^2-4xy)+1=2(x-1)^2+(y+2)^2+(x-2y)^2+1$

$\geq 1>0$ với mọi $x,y$

Ta có đpcm.

6 tháng 11 2020

Mik cảm ơn ạ

9 tháng 6 2015

3x^2+5y^2-4xy-4x+4y+7=x2-4xy+4y2+2x2-4x+2+y2+4y+4+1

                                  =(x-2y)2+2(x2-2x+1)+(y+2)2+1

                                 =(x+2y)2+2(x-1)2+(y+2)2+1\(\ge\)1(với mọi x,y)

                             hay (x+2y)2+2(x-1)2+(y+2)2+1>0 với mọi x,y 

Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :

22 tháng 10 2015

Ta có : 3x^2+5y^2-4xy-4x+4y+7

= x2-4xy+4y2+2x2-4x+2+y2+4y+4+1

= (x-2y)2+2(x2-2x+1)+(y+2)2+1

= (x+2y)2+2(x-1)2+(y+2)2+1 > 1 (với mọi x,y)

 hay (x+2y)2+2(x-1)2+(y+2)2+1  >0 (với mọi x,y)

Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :

3 tháng 10 2017

a) theo bài, ta có:

9x2 - 6x + 2 + y2

= (9x2 - 6x + y2) + 2

= (3x - y)2 + 2

vì (3x - y)2 \(\ge0\forall x,y\in R\)

=> (3x - y)2 + 2 \(\ge\) 2 \(\forall\)x, y \(\in\) R

=> (3x - y)2 + 2 > 0

hay 9x2 - 6x + 2 + y2 > 0

b) làm t.tự

c) theo bài ta có:

A= 2x2 + 4x - 1

= 2(x2 + 2x + 1) - 3

= 2(x + 1)2 - 3

vì 2(x + 1)2\(\ge\) 0 \(\forall x\in R\)

=>2(x + 1)2 - 3 \(\ge\) -3 \(\forall x\in R\)

=> GTNN của A bằng -3

c) 5x2 - 6xy + y2

= (9x2 - 6xy + y2)- 4x2

= (3x - y)2 - 4x2

= (3x - y - 4x)(3x - y + 4x)

= -(x + y)(7x - y)

mik chỉ làm đc đến đây thôi, vì mik lười bấm máy lắm, nhưng có j ủng hộ mik nha

a)

\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)

\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)\(y\)

b)

\(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)

\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)

\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)

\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)

\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)

c)

\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)

\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)

\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)

Ta có \(\left(2x+1\right)^2\ge0\)với mọi  \(x\)

\(\left(y-1\right)^2\ge\)với mọi \(y\)

\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)

và \(1>0\)

\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)

1 tháng 9 2017

a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)

b. \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)

c.  tương tự ý b

29 tháng 8 2016

\(a,x^2+5y^2+2x-4xy-10y+14\)

\(=x^2+2x-4xy+5y^2-10y+14\)

\(=x^2+2x\left(1-2y\right)+5y^2-10y+14\)

\(=x^2+2.x.\left(1-2y\right)+\left(1-2y\right)^2+5y^2-10y-\left(1-2y\right)^2+14\)

\(=\left(x+1-2y\right)^2+5y^2-10y-\left(1-4y+4y^2\right)+14\)

\(=\left(x+1-2y\right)^2+5y^2-10y-1+4y-4y^2+14\)

\(=\left(x+1-2y\right)^2+y^2-6y+13=\left(x+1-2y\right)^2+y^2-2.y.3+9+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4>0\) với mọi x,y (đpcm)

b,tương tự

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm )