Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3x^2+5y^2-4xy-4x+4y+7
= x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
= (x-2y)2+2(x2-2x+1)+(y+2)2+1
= (x+2y)2+2(x-1)2+(y+2)2+1 > 1 (với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1 >0 (với mọi x,y)
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :
a) theo bài, ta có:
9x2 - 6x + 2 + y2
= (9x2 - 6x + y2) + 2
= (3x - y)2 + 2
vì (3x - y)2 \(\ge0\forall x,y\in R\)
=> (3x - y)2 + 2 \(\ge\) 2 \(\forall\)x, y \(\in\) R
=> (3x - y)2 + 2 > 0
hay 9x2 - 6x + 2 + y2 > 0
b) làm t.tự
c) theo bài ta có:
A= 2x2 + 4x - 1
= 2(x2 + 2x + 1) - 3
= 2(x + 1)2 - 3
vì 2(x + 1)2\(\ge\) 0 \(\forall x\in R\)
=>2(x + 1)2 - 3 \(\ge\) -3 \(\forall x\in R\)
=> GTNN của A bằng -3
c) 5x2 - 6xy + y2
= (9x2 - 6xy + y2)- 4x2
= (3x - y)2 - 4x2
= (3x - y - 4x)(3x - y + 4x)
= -(x + y)(7x - y)
mik chỉ làm đc đến đây thôi, vì mik lười bấm máy lắm, nhưng có j ủng hộ mik nha
a)
\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)
\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)
mà\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)và\(y\)
b)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)
\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)
Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)
và\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)
\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)
c)
\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)
\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)
\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)
Ta có \(\left(2x+1\right)^2\ge0\)với mọi \(x\)
\(\left(y-1\right)^2\ge\)với mọi \(y\)
\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)
và \(1>0\)
\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)
a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)
b. \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)
\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)
c. tương tự ý b
\(a,x^2+5y^2+2x-4xy-10y+14\)
\(=x^2+2x-4xy+5y^2-10y+14\)
\(=x^2+2x\left(1-2y\right)+5y^2-10y+14\)
\(=x^2+2.x.\left(1-2y\right)+\left(1-2y\right)^2+5y^2-10y-\left(1-2y\right)^2+14\)
\(=\left(x+1-2y\right)^2+5y^2-10y-\left(1-4y+4y^2\right)+14\)
\(=\left(x+1-2y\right)^2+5y^2-10y-1+4y-4y^2+14\)
\(=\left(x+1-2y\right)^2+y^2-6y+13=\left(x+1-2y\right)^2+y^2-2.y.3+9+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4>0\) với mọi x,y (đpcm)
b,tương tự
Lời giải:
Ta có:
$3x^2+5y^2-4xy-4x+4y+7=2x^2+y^2+(x^2+4y^2-4xy)-4x+4y+7$
$=(2x^2-4x+2)+(y^2+4y+4)+(x^2+4y^2-4xy)+1$
$=2(x^2-2x+1)+(y^2+4y+4)+(x^2+4y^2-4xy)+1=2(x-1)^2+(y+2)^2+(x-2y)^2+1$
$\geq 1>0$ với mọi $x,y$
Ta có đpcm.
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
\(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Min A = 10 khi: 2x + 1 = 0
<=> x = -1/2
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
3x^2+5y^2-4xy-4x+4y+7=x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
=(x-2y)2+2(x2-2x+1)+(y+2)2+1
=(x+2y)2+2(x-1)2+(y+2)2+1\(\ge\)1(với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1>0 với mọi x,y
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :