Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bt k phụ thuộc vào biến:
a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)
Vậy giá trị của A k phụ thuộc vào biến
b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)
Vậy giá trị của bt B k phụ thuộc vào biến
Chứng minh luôn luôn dương:
a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì: \(\left(x-3\right)^2\ge0,\forall x\)
=> \(\left(x-3\right)^2+1>0,\forall x\)
=>đpcm
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)
=>đpcm
\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2\) + (y-2)^2 + 1
Xét nữa là xong
giá trị âm nhá
A = 2x - x2 - 2
= -(x2 - 2x + 2)
= -(x2 - 2x + 1 + 1)
= -(x2 - 2x + 1) - 1
= -(x - 1)2 - 1
Vì (x - 1)2 \(\ge0\forall x\)
=> -(x - 1)2 \(\le0\forall x\)
Vậy A = -(x - 1)2 - 1 \(\le1< 0\forall x\)
\(a=2x-x^2-2\)
\(a=-x^2+2x-2\)
\(a=-x^2+2x-1-1\)
\(a=-\left(x-1\right)^2-1\le-1\)
Dấu "=" xảy ra khi x = 1
Vậy x luôn âm
\(A=2x^2-3y+8x+y^2+11\)
\(=\left(2x^2+8x+8\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)
\(=2\left(x^2+4x+4\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)
\(=2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì: \(2\left(x+2\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x,y\)
\(\Rightarrow2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x,y\)
=.= hok tốt!!
Ta có\(A=2x^2-3y+8x+y^2+11\)
\(=2.\left(x^2+2.x.4+4^2\right)-5-3y+y^2\)
\(=2.\left(x+4\right)^2+\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)-5-\frac{9}{4}\)
\(=2.\left(x+4\right)^2+\left(y-\frac{3}{2}\right)^2-\left(5+\frac{9}{4}\right)< 0\)với mọi x
Không thể làm luôn dương được , chắc mình sai , thôi góp ý vậy
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
A= x^2-6x+10
A=x^2-3x-3x+9+1
A=x(x-3)-3(x-3)+1
A=(x-3)(x-3)+1
A=(x-3)^2+1
Vì (x-3)^2 \(\ge\)0\(\forall x\)
->(x-3)^2+1\(\ge\)1
=>ĐPCM
1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)
hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)
hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
Q= 2x^2 + 9y^2 - 6xy + 2x +11
= x^2 - 6xy + 9y^2 + x^2 + 2x +1 +10
= (x-3y)^2 + (x+1)^2 +10
Ta có: (x-3y)^2 >/ 0
(x+1)^2 >/ 0
10 > 0
Vậy Q luôn có giá trị dương với mọi x và y.
\(=\left(x^2-6xy+9y^2\right)+\left(x^2+2x+1\right)+10\)\(=\left(x-3y\right)^2+\left(x+1\right)^2+10\ge10\)
Dấu ''='' xảy ra khi x=-1 và y=-1/3