K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm ;

\(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)

\(=x^3+9x^2+27x+3^3-\left(x^3+27x+9x^2+243\right)\)

\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243\)

\(=\left(x^3-x^3\right)+\left(9x^2-9x^2\right)+\left(27x-27x\right)+\left(27-243\right)\)

\(=-216\)

=> Giá trị của biểu thức không phụ thuộc vào biến x .

18 tháng 9 2020

( 2x + 3 )( 4x2 - 6x - 9 ) - 2( 4x2 - 1 )

= 2x( 4x2 - 6x - 9 ) + 3( 4x2 - 6x - 9 ) - 8x2 + 2

= 8x3 - 12x2 - 18x + 12x2 - 18x - 27 - 8x2 + 2

= 8x3 - 8x2 - 36x - 25 ( có phụ thuộc vào biến )

( x + 3 )3 - ( x + 9 )( x2 + 27 )

= x3 + 9x2 + 27x + 27 - [ x( x2 + 27 ) + 9( x2 + 27 ) ]

= x3 + 9x2 + 27x + 27 - ( x3 + 27x + 9x2 + 243 )

= x3 + 9x2 + 27x + 27 - x3 - 27x - 9x2 - 243

= -216 ( đpcm )

2 tháng 9 2018

a)

( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )

= ( 6x^2 + 33x - 10x - 55 ) - ( 6x^2 + 14x + 9x + 21 )

= ( 6x^2 + 23x - 55 ) - ( 6x^2 + 23x + 21 )

= 6x^2 + 23x - 55 - 6x^2 - 23x - 21

= ( 6x^2 - 6x^2 ) + ( 23x - 23x ) - ( 55 + 21 )

= -76

=> với mọi x thì giá trị của biểu thức luôn bằng -76

=> đpcm

b)c) tương tự

2 tháng 9 2018

cái này khá dài nên mik ns lun nha 

: bạn nhân đa thức vs đa thức làm bình thường vậy thôi . kết quả là 1 số tự nhiên thì nó kg phụ thuộc vào biến nha 

   chuk hok tốt 

11 tháng 8 2017

1. \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

= \(8x^3+27-8x^3+2=29\)

Vậy biểu thức trên k phụ thuộc vào biến.

2. \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

= \(64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)

= \(8\)

Vậy biểu thức trên k phụ thuộc vào biến.

3. \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)

= \(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

= \(8\)

Vậy biểu thức trên k phụ thuộc vào biến.

25 tháng 9 2020

A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)

   = x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x

  = x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x

  = (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)

= -6x + 16

=> có phụ thuộc vào biến x

B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)

   = 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)

    = 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7

=> không phụ thuộc vào biến x

25 tháng 9 2020

\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)

\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)

\(=-6x+16\)

Vậy biểu thức A phụ thuộc vào biến x

\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8x^3-8-8x^3+1\)

\(-7\)

Vậy biểu thức B không phụ thuộc vào biến x

6 tháng 6 2016

a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)

b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)

Biểu thức A phụ thuộc vào x còn B thì không.

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.