K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)

21 tháng 6 2016

a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)

\(\Rightarrow A< \frac{1}{2}\)(đpcm)

b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1+1-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)

24 tháng 9 2017

\(L_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2015.2016.2017}\)

\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\right)\)

\(L_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\right)\)

\(L_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2016.2017}\right)\)

\(L_1=\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\)

\(L_2=1.2+2.3+...+2006.2007\)

\(3L_2=1.2.3+2.3.\left(4-1\right)+...+2006.2007.\left(2008-2005\right)\)

\(3L_2=1.2.3+2.3.4-1.2.3+...+2006.2007.2008-2005.2006.2007\)\(3L_2=2006.2007.2008\)

\(L_2=\dfrac{2006.2007.2008}{3}\)

\(pt\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{2.2016.2017}\right).x=\dfrac{2006.2007.2008}{3}\)

Dễ dàng tìm được x nhé

24 tháng 9 2017

Xin loi ban nhe, tu dong thu 2 xuong dong thu 3 minh k hieu cho lam, ban ghi ro hon duoc k a !!! Cam on ban rat nhieu, minh muon viet co dau lam nhung cai may cua minh no bi cai quai j roi, nen ban thong cam nhe !!!

15 tháng 6 2018

Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)

\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)

\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

\(S=\dfrac{1009}{2019}\)

Còn lại bạn làm tương tự hết nhé .

25 tháng 12 2017

b.

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+....+\dfrac{2}{\left(n-1\right).n.\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)

1 tháng 12 2018

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+......+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

Vậy..

NV
1 tháng 12 2018

\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n+2-2}{4\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

3 tháng 12 2017

Ta có: \(\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}=\dfrac{1}{2}.\left(\dfrac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\right)=\dfrac{1}{2}\left(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Phản chứng. Giả sử tồn tại 3 số dương $a,b,c$ thỏa mãn điều trên

$\Rightarrow a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}< 6$

$\Leftrightarrow (a+\frac{1}{a}-2)+(b+\frac{1}{b}-2)+(c+\frac{1}{c}-2)< 0$

$\Leftrightarrow \frac{(a-1)^2}{a}+\frac{(b-1)^2}{b}+\frac{(c-1)^2}{c}< 0$ (vô lý với mọi $a,b,c>0$)

Do đó điều giả sử là sai.

Tức là không có 3 số dương $a,b,c$ nào thỏa mãn BĐT đã cho.