K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:

\(4a^3+4b^3\ge\left(a+b\right)^3\)\(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).

Cộng từng vế 3 bất đẳng thức trên ta được:

\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

=> đpcm.

2 tháng 11 2019

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+a^3\ge3b^2a\)

\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

5 tháng 5 2019

\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+1+1+1\)

\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)

\(\Leftrightarrow\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\left(^∗\right)\)

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{cases}}\)

Nhân vế của các bđt ta được :

\(VT\left(^∗\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\cdot3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

5 tháng 5 2019

đặt b + c = x ; c + a  = y ; a + b = z

\(\Rightarrow\)a + b + c = \(\frac{x+y+z}{2}\)

\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

\(\Rightarrow C=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(C=\frac{1}{2}.\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)

20 tháng 1 2020

Có: \(VT-VP=\frac{\left(b^2+c^2-2a^2\right)^2+\left(b-c\right)^2\left(\Sigma_{cyc}a^2+3\Sigma_{cyc}ab\right)}{2a+b+c}\ge0\)

Done!

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

31 tháng 5 2020

Ta biến đối tương đương:

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow4\left(a+b\right)\left(a^2-ab+b^2\right)\Leftrightarrow\left(a+b\right)\left(a+b\right)^2\)

\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)( chia hia vế cho số dương a+b)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\) là đúng.

31 tháng 5 2020

cảm ơn bạn

6 tháng 2 2017

Sửa đề: Chứng minh rằng không có các số a, b, c nào thỏa mãn cả 3 bất đẳng thức 

 |b - c| > |a|(*);  |c - a| > |b|(**);   |a - b| > |c|(***)

Ta dễ thấy a, b, c phải khác nhau từng đôi 1

Ta thấy rằng vai trò của a, b, c trong bài này là như nhau nên ta chỉ cần giải 4 trường hợp là

\(\left(a>0,b>0,c>0\right);\left(a< 0,b< 0,c< 0\right);\left(a>0,b>0,c< 0\right);\left(a< 0,b< 0,c>0\right)\)     

Không mất tính tổng quát ta giả sử: |a| > |b| > |c|

Với \(a>0,b>0,c>0\)thì |b - c| > |a| là sai (1)

Với \(a< 0,b< 0,c< 0\) thì |b - c| > |a| là sai (2)

Với \(a>0,b>0,c< 0\)thì ta đặt \(c=-z\left(z>0\right)\)

Thì bất đẳng thức (*), (**)  ban đầu viết lại là:

\(\hept{\begin{cases}b+z>a\\a-b>z\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}z>a-b\\z< a-b\end{cases}}\)(sai) (3)

Với \(a< 0;b< 0;c>0\)thì ta đặt \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\)

Thì bất đẳng thức (*), (**)  ban đầu viết lại là:

\(\hept{\begin{cases}y+c>x\\x-y>c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}c>x-y\\c< x-y\end{cases}}\)(sai) (4)

Từ (1), (2), (3), (4) ta suy ra điều phải chứng minh

6 tháng 2 2017

mk góp thêm 1 cách nữa

Giả sử tồn tại 3 số a, b, c thỏa mãn cả 3 BĐT trên. Ta có:

\(\left|b-c\right|>\left|a\right|\)\(\Rightarrow\)\(\left(b-c\right)^2>a^2\)\(\Leftrightarrow\)\(b^2-2bc+c^2-a^2>0\)

\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(a-b+c\right)>0\)(1)

Tương tự \(\left|c-a\right|>\left|b\right|\)\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(-a+b+c\right)>0\) (2)

           và \(\left|a-b\right|>\left|c\right|\)\(\Leftrightarrow\)\(-\left(a-b+c\right)\left(-a+b+c\right)>0\) (3)

Nhân (1), (2) và (3) theo vế ta được \(-\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2>0\) (vô lý)

Vậy ko tồn tại 3 số a, b, c thỏa mãn 3 BĐT đã cho.

* Chứng minh : 

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (*) 

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng ) 

Do đó : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) \(\left(1\right)\)

* Chứng minh : 

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) đến đây chứng minh giống chỗ (*) 

... 

Do đó : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( đpcm ) 

13 tháng 3 2019

Xét hiệu

\(\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2\)

\(=\frac{a^2+b^2+c^2}{3}-\frac{\left(a+b+c\right)^2}{9}\)

\(=\frac{3\left(a^2+b^2+c^2\right)}{9}-\frac{a^2+b^2+c^2+2ab+2bc+2ac}{9}\)

\(=\frac{1}{9}\left[3\left(a^2+b^2+c^2\right)-a^2-b^2-c^2-2ab-2bc-2ac\right]\)

\(=\frac{1}{9}\left(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{9}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\)

\(=\frac{1}{9}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) \(\ge0\)

Vậy \(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)

Dấu "=" xảy ra <=> a=b=c

13 tháng 3 2019

\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\Leftrightarrow\frac{a^3+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Leftrightarrow3a^2+3b^2+3c^2\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Các phép biến đổi là tương đương suy ra đpcm. \("="\Leftrightarrow a=b=c\)