K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

lon hon hoac bang ban

\(2\left(a^2+b^2\right)=a^2+b^2+a^2+b^2\ge a^2+b^2+2ab=\left(a+b\right)^2\)

24 tháng 6 2016

Đề sai à, giả sử \(a>1\Rightarrow\frac{a+1}{a}< 2\)

27 tháng 12 2015

mik tự hào 2 tiếng thằng ngơ nhưng ko ngơ như cậu nghĩ đâu

28 tháng 12 2015

Ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)

<=>\(a+b\ge2\sqrt{ab}\)

Dấu ''='' xảy ra <=>\(\sqrt{a}-\sqrt{b}=0<=>\sqrt{a}=\sqrt{b}<=>a=b\)

Tick cho tui nha,bạn hiền

28 tháng 12 2015

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

15 tháng 9 2019

Ban tham khao BDT Cosi dang tong quat nha

26 tháng 7 2016

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)

<=>\(a+b-2\sqrt{ab}\ge0\)

<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

=>dpcm

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2