K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

Vì \(a,b>1\) và \(c\ge0\Rightarrow0< \log_ba\le\log_b\left(a+c\right)\)

                              \(\Rightarrow\frac{1}{\log_ba}\ge\frac{1}{\log_b\left(a+c\right)}\Leftrightarrow\log_ab\ge\log_{a+c}b\)

                              \(\Rightarrow\) điều phải chứng minh

14 tháng 5 2016

Ta có : 

          \(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)

                                          \(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)  

Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)

Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\)  (**)

Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)

Dấu "=" xảy ra khi c = 0 hoặc a = b

26 tháng 3 2016

Chọn 2 làm cơ số, ta có :

\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)

Mặt khác :

\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)

Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)

b) Ta có :

\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)

c) Ta có :

\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)

Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .

Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)

Suy ra \(\log_35=3a\) do đó :

                                     \(\log_25=\log_23.\log35=3ac\)

Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)

Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)

Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)

d) Điều kiện : \(a>0;a\ne0;b>0\)

Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :

\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)

Từ đó ta tính được :

\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)

 

 

a) Từ công thức đổi cơ số suy ra ∀a,b,c > 0 (a,b ≠ 1), logab. logbc = logac.

Do đó log36. log89. log62 = ( log36. Log62). = log32. log23 = .

b) logab2+ = logab2 + logab2 =2logab2 = 4 loga|b|.


14 tháng 5 2016

Ta có : 

\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)

Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :

\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\)  (2)

Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)

hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)

Chứng minh tương tự ta được :

                           \(a^{\log_bc}+b^{\log_ca}\ge2a\)

                           \(b^{\log_ca}+c^{\log_ab}\ge2b\)

\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)

hay : 

              \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\)  (*)

Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\)  (2*)

Từ (*) và (2*) ta có : 

                        \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)

17 tháng 5 2016

 

\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)

Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)

Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)

và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)

        \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)

Xét bảng biến thiên :

x f'(x) f(x) 8 8 8 8 - + + + 0 0 0 - +

Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)

                              hay : \(e^x-x-1\ge0\) với mọi  \(x\in R\)

=> Điều phải chứng minh
 
 

 

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

17 tháng 5 2016

Xét hàm số : \(f_n\left(x\right)=e^x-1-x-\frac{x^2}{2}-.......-\frac{x^n}{n!}\)

Ta sẽ chứng minh \(f_n\left(x\right)\ge0\)  (*) với mọi \(x\ge;n\in N\)

* Với \(n=1:f_1\left(x\right)=e^x-1-x\Rightarrow f_1'\left(x\right)=e^x-1\ge0\) và \(f'\left(x\right)=0\) khi x = 0

\(\Rightarrow\) Hàm số \(f_1\left(x\right)\) đồng biến với \(x\ge0\Rightarrow f_1\left(x\right)\ge f_1\left(0\right)=0\)

Vậy (*) đúng với n = 1

* Giả sử (*) đúng với n = k hay \(f_k\left(x\right)\ge0\), ta cần chứng minh (*) đúng với \(n=k+1\) hay \(f_{k+1}9x=e^x-1-x-\frac{x^2}{2}-...-\frac{x^k}{k!}-\frac{x^{k+1}}{\left(k+1\right)!}\ge0\)

Thật vậy :

\(f_{k+1}'\left(x\right)=e^x-1-x-\frac{x^k}{k!}=f_k\left(x\right)\ge0\) (theo giả thiết quy nạp và \(f'_{k+1}\left(0\right)\ge f_{k+1}\left(0\right)=0\)khi \(x=0\)

\(\Rightarrow\) hàm số \(f_{k+1}\left(x\right)\) đồng biến với mọi \(x\ge0\Rightarrow f_{k+1}\left(x\right)\ge f_{k+1}\left(0\right)=0\) Vậy (*) đúng với n = k+1

Theo phương pháp quy nạp \(\Rightarrow e^x\ge1+x+\frac{x^2}{2}+..+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)

NV
10 tháng 11 2018

1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)

2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)

3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)

\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)

\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)

12 tháng 5 2016

Ta có :

\(a=\log_615=\frac{\log_215}{\log_26}=\frac{\log_23+\log_25}{1+\log_23}\left(1\right)\)

\(b=\log_{12}18=\frac{\log_118}{\log_212}=\frac{\log_2\left(2.3^2\right)}{\log_2\left(2^2.3\right)}=\frac{1+2\log_23}{2+\log_23}\left(2\right)\)

Từ \(\left(2\right)\Rightarrow b\left(2+\log_23\right)=1+2\log_23\Leftrightarrow\left(b-2\right)\log_23=1-2b\Leftrightarrow\log_23=\frac{1-2b}{b-2}\)

Từ \(\left(1\right)\Rightarrow\log_25=a\left(a+\log_23\right)-\log_23=\left(a-1\right)\log_23+a=\left(a-1\right)\frac{1-2b}{b-2}+a=\frac{b-5}{4b-2a-2ab-2}\)

\(\Rightarrow F=\log_{25}24=\frac{\log_224}{\log_225}=\frac{\log_2\left(2^3.3\right)}{\log_25^2}=\frac{3+\log_23}{2\log_25}=\frac{3+\frac{1-2b}{b-2}}{2.\frac{2b-a-ab-1}{b-2}}=\frac{b-5}{4b-2a-2ab-2}\)