Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a+b+c)2= a2+b2+c2+2ab+2bc+2ca>a2+b2+c2
=> đpcm
Mình chỉ hướng dẫn thôi bạn tự làm nhá
a) (a2 +2ab +b2)-(a2-2ab+b2)= a^2+2ab+b^2-a^2+2ab-b^2=2ab+2ab=4ab
b) \(a^2+2ab+b^2+a^2-2ab+b^2=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)
c)\(a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
a) \(bđt\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Rightarrow0< 1\)(luôn đúng)
b) \(bđt\Leftrightarrow m^2+n^2+2-2m-2n\ge0\)
\(\Leftrightarrow\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(đúng)
Dấu "=" khi m = n = 1
c) Áp dụng bđt cô - si với 2 số không âm:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Dấu "=" khi a = b
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Ta có: (a-1)2+(b-1)2+(c-1)2>0
<=>a2-2a+1+b2-2b+1+c2-2c+1>0
<=>a2+b2+c2+3-2(a+b+c)>0
<=>a2+b2+c2+3>2(a+b+c)
chúc bn học giỏi, đừng quên k mình nhé!!!