Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
NA là tiếp tuyến có A là tiếp điểm(gt)
NE là tiếp tuyến có E là tiếp điểm(gt)
Do đó: ON là tia phân giác của \(\widehat{AOE}\)(Tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat{AOE}=2\cdot\widehat{EON}\)
Xét (O) có
ME là tiếp tuyến có E là tiếp điểm(gt)
MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OM là tia phân giác của \(\widehat{EOB}\)(Tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat{EOB}=2\cdot\widehat{EOM}\)
Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)
hay \(2\cdot\widehat{EON}+2\cdot\widehat{EOM}=180^0\)
\(\Leftrightarrow\widehat{EON}+\widehat{EOM}=90^0\)
hay \(\widehat{MON}=90^0\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào \(\Delta\)ONM vuông tại O có OE là đường cao ứng với cạnh huyền NM, ta được:
\(ME\cdot NE=OE^2\)
mà OE=R
nên \(ME\cdot NE=R^2\)(đpcm)
a: Xét (O) có
MA là tiếp tuyến có A là tiếp điểm
MQ là tiếp tuyến có Q là tiếp điểm
Do đó: MA=MQ
Xét (O) có
EQ là tiếp tuyến có Q là tiếp điểm
EB là tiếp tuyến có B là tiếp điểm
Do đó: EQ=EB
Ta có: QM+QE=EM
hay EM=AM+BE
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
hay ΔCOD vuông tại O
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)
= √x(√a + √b) - √y(√a + √b)
= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)