Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)
Dấu "=" xảy ra khi \(x=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)
\(ab+cd\ge2\sqrt{abcd}=2\) (2)
\(ac+bd\ge2\sqrt{acbd}=2\) (3)
\(ad+bc\ge2\sqrt{adbc}=2\) (4)
Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh
Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)
1) \(x+\frac{1}{x}\ge2\left(1\right)\)
<=> \(\frac{x^2+1}{x}\ge2\)
<=> x2 + 1 \(\ge\)2x
<=> x2 + 1 - 2x \(\ge\) 0
<=> (x - 1)2 \(\ge\)0 (2)
Bđt (2) đúng vậy bđt (1) được chứng minh
b) Áp dụng bđt AM-GM cho 10 số dương ta có:
a2+b2+c2+d2+ab+ac+ad+bc+bd+cd
\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)
\(=10\sqrt[10]{1}=10\left(đpcm\right)\)
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)
\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)
\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)
Ta có :
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2ac+2bc\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)hoặc (a - b)2=0 hoặc (b - c)2=0 hoặc (c - a)2=0 \(\Leftrightarrow\)a - b = 0 hoặc b - c = 0 hoặc c - a = 0\(\Leftrightarrow\)a = b; b = c; c = a (1)
Từ (1)
\(\Rightarrow\)a = b = c
nói hoặc là sai rồi vì 3 trường hợp này xảy ra trong 1 đẳng thức
1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0
<=> (a -b)2 +(b -c)2 + (c -a)2 >= 0 (bđt đúng với mọi a, b, c)
2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)
tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\); \(\frac{ca}{b}+\frac{bc}{a}\ge2c\)
Cộng từng vế 3 bđt trên suy ra đpcm
3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)2 = 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0
=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2
=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c
=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0
Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2
Mọi người giúp mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí. Thanhks trước.
Bài 1: cho a, b, c thuộc R.
Chứng minh a2 + b2 + c2 >= ab+ac+bc
Bài 2:cho a, b, c >0.
Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c
Bài 3: cho a, b, c thoả mãn a+b=c.
Chứng minh a4 +b4 +c4 =2a2b2 +2b2c2 + 2a2c2
nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0
luôn đúng với mọi a;b;c
suy ra ĐPCM
ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)
<=> \(a^2+b^2+c^2\ge ab+bc+ca\)
Mk giải thích nhanh nhé
Bạn trừ vế phải cho vế trái rồi nhân 2 lên ta ra được (a-b)^2+(b-c)^2+(c-a)^2 >=0 => đpcm
Đề sửa lại phải là : a^2+b^2+c^2 >= ab+bc+ca nha bạn !
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
Tương tự : b^2+c^2 >= 2bc
c^2+a^2 >= 2ca
<=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)
<=> a^2+b^2+c^2 >= ab+bc+ca
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c
Tk mk nha