Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai nay hinh nhu la o sach ly tu trong
giai
abcabc=a.100000+b.10000+c.1000+a.100+b.10+c.1
= 100100.a+10010.b+1001.c
100100.a chia het cho 11 va 13
b.10010 chia het cho 11 va 13
c.1001 chia het cho 11 va 13
=> abcabc chia het 11 va 13
Ta có :
abcabc=abcx1000+abcx1
=abcx[1000+1]
=abcx1001
=abcx7x11x13
Vì 11 chia hết cho 11 ; 13 chia hết cho 13 nên suy ra [abcx7x11x13 ] chia hết cho 11 , chia hết cho 13
Hay abcabc chia hết cho 11 , chia hết cho 13
Vậy abcabc chia hết cho 11 , chia hết cho 13
a có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
abcabc = abc . 1001
mà 1001 chia hết cho 7;11;13(là số nguyên)
nên abc.1001 chia hết cho 7;11;13(là số nguyên)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
ta phân tích như sau :
abcabc=abcx1001 vì 1001 chia hết cho 3 số nguyên 7 ;11;13 nên abcx1001cũng chia hết cho 7;11;13 mà abcabc=abcx1001 từ đó suy ra abcabc chia hết ít nhất 3 số nguyên tố
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
Ta thấy: abcabc = abc.1001
Mà 1001 chia hết cho 7;11;13
=> abcabc chia hết cho 7;11;13
7;11;13 đều là số nguyên tố
=> abcabc chia hết cho ít nhất 3 số nguyên tố (7;11 và 13)