Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 1217 + 997 = 1217 + 900 + 97 = 2117 + 97 = 2214
2. D. a>b hoặc = b
P/s ; không chắc nhé
hok tốt
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
\(\)Áp dụng BĐT Cô-sita có:\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\left(đpcm\right)\)
Bài giải
Ta có: a = 1 + 2 + 3 + 4 +...+ n; b = 2n + 1 (n \(\inℕ\); n > 2)
Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2); b = 2n + 1 (b lẻ)
Vì n > 2
Nên a > 2 và b > 2
Mà a chẵn và b lẻ
Suy ra a không chia hết cho b và ngược lại
Vậy a và b là 2 số nguyên tố cùng nhau.
Sử dụng Bất đẳng thức cô si:
Ta có: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Sử dụng hằng đẳng thức:
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-2ab+b^2}{ab}+2\)\(=\frac{\left(a-b\right)^2}{ab}+2\)
Vì \(\frac{\left(a-b\right)^2}{ab}\ge0\)\(\Rightarrow\frac{\left(a-b\right)^2}{ab}+2\ge2\)
Hay \(\frac{a}{b}+\frac{b}{a}\ge2\)