Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1, ta có
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6
Giả sử khẳng định đúng với n = k, tức là:
k^3 + 9k^2 + 2k chia hết 6
Đặt k^3 + 9k^2 + 2k = 6Q
Ta sẽ CM khẳng định đúng với n = k + 1, ta có:
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1)
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12
= 6Q + (3k^2 + 21k) + 12
= 6Q + 3k(k + 7) + 12
= 6Q + 3k[(k + 1) + 6] + 12
= 6Q + 3k(k + 1) + 6.3k + 12
Vì k và k + 1 là 2 số nguyên liên tiếp nên:
k(k + 1) chia hết cho 2
=> 3k(k + 1) chia hết cho 3.2 = 6
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6
Vậy theo nguyên lý quy nạp ta chứng minh được
n^3 + 9n^2 + 2n chia hết 3
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)
10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1)
Vậy ...
T I C K cho mình nha
"Mượn 1 con lạc đà nữa, khi đó ông chủ sẽ có 18 con. Anh cả được ½ số lạc đà, nghĩa là sẽ được 18 : 2 = 9 con. Anh hai được 1/3 số lạc đà, nghĩa là sẽ được 18 : 3 = 6 con. Anh út được 1/9 số lạc đà, nghĩa là sẽ được 18 : 9 = 2 con.
Khi đó, ông chủ còn lại 18 – (9 + 6 + 2) = 1 con. Đây chính là con đã mượn về. Do đó sau khi đem trả lại, số lạc đà mỗi người tương ứng sẽ là 9, 6, 2 con".
\(=a\left(a+2\right)\left(25a^2-1\right)=\left(a^2+2a\right)\left(25a^2-1\right)=\)
\(=25a^4-a^2+50a^3-2a=24a^4+48a^3+a^4+2a^3-a^2-2a\)
Ta có \(24a^4+48a^3\) chia hết cho 24
Xét
\(a^4+2a^3-a^2-2a=a^3\left(a+2\right)-a\left(a+2\right)=\left(a+2\right)\left(a^3-a\right)\)
\(=a\left(a^2-1\right)\left(a+2\right)=a\left(a-1\right)\left(a+1\right)\left(a+2\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)
Đây là tích 4 số tự nhiên liên tiếp
Trong 4 số tự nhiên liên tiếp tồn tại 2 số chẵn liên tiếp trong đó có 1 số chia hết cho 4 số chẵn còn lại chia hết cho 2 => tích 4 số tự nhiên liên tiếp chia hết cho 8
Trong 3 số tự nhiên liên tiếp sữ tồn tại 1 số chia hết cho 3
=> tích 4 số tự nhiên liên tiếp chia hết cho cả 3 vag 8, mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24
=> \(\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) chia hết cho 24
Vậy \(a\left(a+2\right)\left(25a^2-1\right)\) chia hết cho 24