\(^{1975}\)+4\(^{1974}\)+...+4
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

Đặt    S=41975+41974+...+42

=>   4S=41976+41975+...+43

=>4S-S=41976+41975+...+43-41975-41974-...-42

=>    3S=41976-42

=>       \(S=\frac{4^{1976}-16}{3}\)

=>   \(A=75.\left(4^{1975}+4^{1974}+...+4^2+5\right)+25\)

=>   \(A=75.\left(S+5\right)+25\)

=>   \(A=75.\left(\frac{4^{1976}-16}{3}+\frac{15}{3}\right)+25\)

=>   \(A=75.\frac{4^{1976}-1}{3}+25\)

=>   \(A=25.\left(4^{1976}-1\right)+25\)

=>   \(A=25.4^{1976}-25+25\)

=>   \(A=25.4^{1976}\)

=>  

A chia hết cho 41976

=> ĐPCM

4 tháng 4 2017

k mk đi mà làm ơnnnnnnnnnn

4 tháng 8 2017

\(8^{30}+8^{31}+8^{32}\)

\(=8^{30}.1+8^{30}.8+8^{30}.8^2\)

\(=8^{30}.1+8^{30}.8+8^{30}.64\)

\(=8^{30}\left(1+8+64\right)\)

\(=8^{30}.73\)

\(=\left(2^3\right)^{30}.73\)

\(=2^{90}.73\)

\(=2^{89}.146⋮146\rightarrowđpcm\)

\(4^{25}+4^{26}+4^{27}+4^{28}+4^{29}+4^{30}\)

\(=4^{25}.1+4^{25}.4+4^{25}.4^2+4^{25}.4^3+4^{25}.4^4+4^{25}.4^5\)

\(=4^{25}.1+4^{25}.4+4^{25}.16+4^{25}.64+4^{25}.256+4^{25}.1024\)

\(=4^{25}\left(1+4+16+64+256+1024\right)\)

\(=4^{25}.1365\)

\(=4^{25}.195.7⋮7\rightarrowđpcm\)

6 tháng 8 2017

à há, giờ mới biết mi làm sao biết đc cách giải BTVN bucqua

10 tháng 3 2019

\(a)M=75.\left(4^{2017}+4^{2016}+...+4^2+4+1\right)+25\)

\(\Rightarrow M=\left(25.3\right).\left(4^{2017}+4^{2016}+...+4^2+4+1\right)+25\)

\(\Rightarrow M=25.\left(4-1\right).\left(4^{2017}+4^{2016}+...+4^2+4+1\right)\)

\(\Rightarrow M=25.\left[4\left(4^{2017}+4^{2016}+...+4^2+4+1\right)-\left(4^{2017}+4^{2016}+...+4^4+4+1\right)\right]+25\)

\(\Rightarrow M=25.\left[\left(4^{2018}+4^{2017}+...+4^2+4+1\right)-\left(4^{2017}+4^{2016}+...+4^2+4+1\right)\right]+25\)

\(\Rightarrow M=25.\left(4^{2018}-1\right)+25\)

\(\Rightarrow M=25.4^{2018}-25+25\)

\(\Rightarrow M=25.4^{2018}=\left(25.4\right).4^{2017}=100.4^{2017}=10^2.4^{2017}⋮10^2\)

\(\text{Vậy }M⋮10^2\left(đpcm\right)\)

\(b)\text{ Đặt }ab=c^2\text{ và }\left(a,\text{ }c\right)=d\left(d\in N^{\circledast}\right)\)

\(-\text{Ta có: }\left\{{}\begin{matrix}a⋮d\\c⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=md\\c=nd\end{matrix}\right.\text{ với }\left(m;n\right)=1\)

\(-\text{Thay vào }ab=c^2\text{, ta được }mdb=\left(nd\right)^2=n^2.d^2\)

\(\Rightarrow mb=n^2.d\)

\(\Rightarrow b⋮n^2,\text{ vì }\left(a;b\right)=1=\left(b;d\right)\)

\(-\text{Mà: }n^2⋮b\text{ nên suy ra }n^2=b\)

\(-\text{Thay vào }ab=c^2,\text{ ta được }a=d^2\)

\(\RightarrowĐpcm\)

15 tháng 3 2017

Ta có: A = 1 + 3 + 32 + 33 + … + 319.

\(\Rightarrow\) A = (1 + 3) + (32 + 33) + … + (318 + 319)

\(\Rightarrow\) A = 4 + (1. 32 + 3. 32) + … + (1. 318 + 3. 318)

\(\Rightarrow\) A = 4 + 32. (1 + 3) + … + 318. (1 + 3)

\(\Rightarrow\) A = 4 + 32. 4 + … + 318. 4

\(\Rightarrow\) A = 4. ( 32 + … + 318)

\(\Rightarrow\) A chia hết cho 4.

Vậy A chia hết cho 4.

Chúc pạn hok tốt!!! tran khoi my

15 tháng 3 2017

kcj, chúng mk là bạn bè tốt mà !!! tran khoi my

2 tháng 7 2017

A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . ( 41994 - 1 ) + 25

A = 25 . ( 41994 - 1 + 1 )

A = 25 . 41994 

A = 25 . 4 . 41993

A = 100 . 41993 \(⋮\)100

2.

a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2 

Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3

b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4 

Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 ) 

= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )

= 5b + 10

= 5 . ( b + 2 ) \(⋮\)5

3.

Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên

\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên