K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

#)Giải :

 

Giả sử cả A và B đều chia hết cho 5 

=> a - b chia hết cho 5 

=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5 

=> 22n + 1 chia hết cho 5 

Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra

=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5

=> đpcm

15 tháng 2 2022

-Ta có: \(2^{4n}=16^n=\overline{...6}\)

\(\Rightarrow2^{4n}.4=\overline{...6}.4\)

\(\Rightarrow2^{4n+2}=\overline{...4}\)

\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)

\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)

\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)

\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)

-Như vậy, thì \(A⋮5\) hay \(B⋮5\).

-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.

16 tháng 2 2022

-Chứng minh hai số đó không thể cùng chia hết cho 5:

-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.

-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5. 

\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)

-Ta có: \(2^{2n}=4^n\).

+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.

+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)

\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).

\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.

\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.

\(\Rightarrow B\) không chia hết cho 5.

-Vậy.................

11 tháng 7 2024

bạn à :))) 3 năm rồi ấy

 

AH
Akai Haruma
Giáo viên
21 tháng 4 2018

Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{-(a+b)}{c(a+b+c)}\)

\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)

\(\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

Ta sẽ cm \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}(*)\)

Thật vậy: \((*)\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}-\frac{1}{c^{2n+1}}\)

\(\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{-(a^{2n+1}+b^{2n+1})}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\)

\(\Leftrightarrow (a^{2n+1}+b^{2n+1})\left(\frac{1}{(ab)^{2n+1)}}+\frac{1}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\right)=0\)

\(\Leftrightarrow (a^{2n+1}+b^{2n+1}).\frac{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})+(ab)^{2n+1}}{(abc)^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)

\(\Leftrightarrow \frac{(a^{2n+1}+b^{2n+1})(c^{2n+1}+b^{2n+1})(c^{2n+1}+a^{2n+1})}{abc^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)

Thấy rằng

\((a^{2n+1}+b^{2n+1})(b^{2n+1}+c^{2n+1})(c^{2n+1}+a^{2n+1})=(a+b).X.(b+c).Y.(c+a).Z\)

\(=0\) (do \((a+b)(b+c)(c+a)=0\) )

Do đó đẳng thức $(*)$ cần chứng minh đúng.

-------------------

Ta tiếp tục chứng minh \(\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\frac{1}{(a+b+c)^{2n+1}}(**)\)

\(\Leftrightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)

Thật vậy:

\((a+b)(b+c)(c+a)=0\)\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)

Không mất tổng quát giả sử \(a+b=0\)

\(\Rightarrow \left\{\begin{matrix} a^{2n+1}+b^{2n+1}+c^{2n+1}=(-b)^{2n+1}+b^{2n+1}+c^{2n+1}=c^{2n+1}\\ (a+b+c)^{2n+1}=(0+c)^{2n+1}=c^{2n+1}\end{matrix}\right.\)

\(\Rightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)

Do đó $(**)$ đúng

Từ $(*)$ và $(**)$ ta có đpcm.

23 tháng 4 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Xét \(a=-b\) thì ta có

\(\left\{{}\begin{matrix}\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{\left(a+b+c\right)^{2n+1}}=\dfrac{1}{c^{2n+1}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)

Tương tự cho 2 bộ số còn lại ta được ĐPCM.

7 tháng 6 2017

Ac. Có bài giải lúc nào vậy.

7 tháng 6 2017

Ta có   \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\)  \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\)  \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\)  \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\)  a = -b hoặc b = -c hoặc c = -a

1) Nếu a = -b thì  \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và  \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)

\(\Rightarrow\)  \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)

Tương tự cho 2 trường hợp còn lại suy ra đpcm.

a: \(=\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot x^{n-1+2n+1+1}\cdot y^{2n+1+n+1}=\dfrac{1}{2}x^{3n+1}y^{3n+2}\)

Hệ số: 1/2

Bậc: 6n+3

b: \(=\dfrac{6}{5}\cdot\dfrac{4}{2}\cdot\dfrac{2}{6}\cdot x^{3-n+4-n}\cdot y^{5-n+6-n}=\dfrac{4}{5}x^{7-2n}y^{11-2n}\)

Hệ số: 4/5

bậc: 18-4n

c: \(=\dfrac{4}{7}x^{2-n+2n-3+1}y^{1+n-1+1}=\dfrac{4}{7}x^{n-1}y^{n+1}\)

Hệ số: 4/7

Bậc: 2n

d: =4/7x^(2n+2)*y^(2n+2)

Hệ số: 4/7

Bậc: 4n+4

13 tháng 6 2016

a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc

=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc

=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)

=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)

=(ab+ac+b2+bc)(c+a)

=(a+b)(b+c)(c+a)

13 tháng 6 2016

a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)

\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)

\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)

\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )

\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)

  • Với \(x+y=0\Leftrightarrow a^{2n+1}+b^{2n+1}=0\Leftrightarrow\left(a+b\right).A=0\)với A là một đa thức 

Mà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)

Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.

\(\)

18 tháng 12 2021

xin lỗi bài này ẻm ko biết làm

4 tháng 9 2017

Ta có:

\(VP=\left(a+b\right)\left(a^{2n}-a^{2n-1}.b+a^{2n-2}.b^2+...+a^{2n}.b^{2n-2}-a.b^{2n-1}+b^{2n}\right)\)

\(=a^{2n+1}-a^{2n}.b+a^{2n-1}b^2+...+a^2.b^{2n-1}+a.b^{2n}+a^{2n}.b-a^{2n-1}.b^2+....-a.b^{2n}+b^{2n+1}\)

\(=a^{2n+1}+b^{2n+1}=VT\)

Vậy.....................(đpcm)

Chúc bạn học tốt!!!

Ta có:VT=\(\left(a+b\right)\left(a^{2n}-a^{2n-1}b+...-b^{2n}\right)\)

=\(a^{2n+1}-a^{2n}b+...+a^{2n}b+b^{2n}\)(Triệt tiêu hết )

=\(a^{2n+1}+b^{2n+1}\)(đpcm)