K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

Ta có a(a2 - bc) + b(b2 - ca) + c(c2 - ab) 

= a3 + b3 + c3 - 3abc

= (a + b)3 - 3ab(a + b) + c3 - 3abc

= [(a + b)3 + c3] - 3ab(a + b + c) 

= (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) 

= (a + b + c)(a2 +  b2 + c2 + 2ab - ac - bc - 3ab) 

= (a + b + c)(a2 +  b2 + c2 - ab - ac - bc)  (đpcm) 

1 tháng 8 2021

Gợi ý cách làm là nhóm 2 đầu 2 cuối r khai triển HĐT để nhìn cho dễ hơn thôi còn ko thì cứ khai triển hết ra là dc

10 tháng 11 2020

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Đẳng thức xảy ra khi a = b = c

NV
14 tháng 5 2020

Áp dụng BĐT Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Cộng vế với vế:

\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
25 tháng 3 2019

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

25 tháng 3 2019

Cám ơn

16 tháng 5 2019

1 ) (a+b+c)^2 >= 3(ab+bc+ac)

<=> a^2 + b^2 + c^2 >= ab + bc + ac

<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac

<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0 

<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0 

( luôn đúng với mọi a ; b ; c )

( đpcm )

2 ) P =  \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)

AD BĐT Cô - si và BĐT phụ đã cmt ở trên  ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu " = " xảy ra <=> a = b = c 

16 tháng 5 2019

Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ

đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)

\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu " = " xảy ra <=> a=b

31 tháng 7 2019

Em ko bik ạ

1 tháng 8 2019

Bài 1:

a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc

= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc

= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )

= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )

= ab.( a + b ) + c2.( a + b )v + c.( a + b)2

= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]

= ( a + b ).( ab + c2 + ac + bc )

= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]

= ( a + b ).[ a.( b + c ) + c.( b + c ) ]

= ( a + b ).( b + c ).( a + c )

b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )

= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b  ) - ( b + c ) ]

= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )

= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )

= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )

= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )

= ( a + b ).( b + c ).( a - c )

c) ( x2 + x )2 + 2.( x2 + x ) - 3

Đặt x2 + x = a

Khi đó đa thức trở thành:

a2 + 2a - 3

= a2 + 3a - a - 3

= a.( a + 3 ) - ( a + 3 )

= ( a - 1 ).( a - 3 )

\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )

B2

ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0

\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0

\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0

\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0

\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0

\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0

\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0

\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0

\(\Leftrightarrow\) a = b , b = c , a = c

\(\Rightarrow\) a = b = c