Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
fix: \(l=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(49l=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(49l+l=\left(1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)\(50l=1-\frac{1}{7^{100}}\Leftrightarrow l=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(đpcm\right)\)
Gọi A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)vào A ta được
\(\frac{1}{7^2}\).A= \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)
A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+....+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Cộng \(\frac{1}{7^2}A\)+\(A\)=\(\frac{1}{49}-\frac{1}{7^{102}}\)\(\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}\)
\(A=\frac{1}{50}-\frac{1}{7^{102}}.\frac{49}{50}<\frac{1}{50}\left(đpcm\right)\)
\(\frac{1}{7^2}A=\frac{1}{7^2}\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)
\(\Leftrightarrow\frac{1}{7^2}A=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-\frac{1}{7^{10}}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
\(\Leftrightarrow A+\frac{1}{7^2}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\cdot\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)
2/ Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow\frac{A}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
\(\Rightarrow A+\frac{A}{7^2}=\left(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)+\left(\frac{1}{7^4}-\frac{1}{7^6}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\right)\)
\(\Leftrightarrow\frac{50A}{49}=\frac{1}{7^2}-\frac{1}{7^{102}}< \frac{1}{7^2}=\frac{1}{49}\)
\(\Leftrightarrow A< \frac{1}{50}\)
1/ Với x là số lẻ thì: x = 2k + 1
\(\Rightarrow M\left(x\right)=x^2-x-2=\left(2k+1\right)^2-\left(2k+1\right)-2=4k^2+2k-2\)
Là 1 số chẵn khác 2 nên M(x) không phải là số nguyên tố
Với x là số chẵn thì: x = 2k
\(\Rightarrow M\left(x\right)=x^2-x-2=4k^2-2k-2\) là số chẵn khác 2 nên M(x) không phải là số nguyên tố.
Vậy không tồn tại x nguyên để M(x) là số nguyên tố