Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24
= (x + 1)(x + 4)(x + 2)(x + 3) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)
Đặt x2 + 5x + 5 = t
Thay x2 + 5x + 5 = t vào (*) ta được:
A = (t - 1)(t + 1) - 24
= t2 - 25
= (t + 5)(t - 5)
= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)
= (x2 + 5x + 10)(x2 + 5x)
= (x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)
Vậy: A chia hết cho x (Với x ≠ 0)
Ta có:\(\left(x+3\right)^2=\left(x+3\right)\left(x-3\right)\)
Xét \(x+3=0\Rightarrow x=-3\)
Xét \(x+3\ne0\) ta có:
\(x+3=x-3\)
\(\Rightarrow0=6\left(VL\right)\)
Vậy \(x=-3\)
a)
(x + 3)2 = (x + 3)(x – 3)
⇔ (x + 3)2 - (x + 3)(x - 3) = 0
⇔ (x + 3)(x + 3 - x + 3) = 0
⇔ 6(x + 3) = 0
⇔ x = -3
Vậy: x = -3
b) Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24
= (x + 1)(x + 4)(x + 2)(x + 3) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)
Đặt x2 + 5x + 5 = t
Thay x2 + 5x + 5 = t vào (*) ta được:
A = (t - 1)(t + 1) - 24
= t2 - 25
= (t - 25)(t + 25)
= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)
= (x2 + 5x + 10)(x2 + 5x)
(x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)
Vậy: A chia hết cho x (Với x ≠ 0)
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
A = (x + 1)(x + 2)(x + 3)(x + 4) – 24
= (x + 1)(x + 4)(x + 2)(x + 3) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)
Đặt x2 + 5x + 5 = t
Thay x2 + 5x + 5 = t vào (*) ta được:
A = (t - 1)(t + 1) - 24
= t2 - 25
= (t + 5)(t - 5)
= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)
= (x2 + 5x + 10)(x2 + 5x)
= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)
Vậy A chia hết (x + 5)(Với x ≠ -5)